
sid.inpe.br/mtc-m21b/2017/03.20.19.58-TDI

CHARACTERIZATION OF CHANGES IN WEB
SERVICES CONTRACTS BASED ON REPOSITORY

MINING

Diego Benincasa Fernandes Cavalcanti de Almeida

Dissertação de Mestrado do Curso
de Pós-Graduação em Computação
Aplicada, orientada pelo Prof. Dr.
Eduardo Martins Guerra.

URL of the original document:
<http://urlib.net/8JMKD3MGP3W34P/3NHQ3T8>

INPE
São José dos Campos

2017

http://urlib.net/8JMKD3MGP3W34P/3NHQ3T8

PUBLISHED BY:

Instituto Nacional de Pesquisas Espaciais - INPE
Gabinete do Diretor (GB)
Serviço de Informação e Documentação (SID)
Caixa Postal 515 - CEP 12.245-970
São José dos Campos - SP - Brasil
Tel.:(012) 3945-6923/6921
Fax: (012) 3945-6919
E-mail: pubtc@sid.inpe.br

COMMISSION OF BOARD OF PUBLISHING AND PRESERVATION
OF INPE INTELLECTUAL PRODUCTION (DE/DIR-544):
Chairperson:
Marciana Leite Ribeiro - Serviço de Informação e Documentação (SID)
Members:
Dr. Gerald Jean Francis Banon - Coordenação Observação da Terra (OBT)
Dr. Amauri Silva Montes - Coordenação Engenharia e Tecnologia Espaciais (ETE)
Dr. André de Castro Milone - Coordenação Ciências Espaciais e Atmosféricas
(CEA)
Dr. Joaquim José Barroso de Castro - Centro de Tecnologias Espaciais (CTE)
Dr. Manoel Alonso Gan - Centro de Previsão de Tempo e Estudos Climáticos
(CPT)
Dra Maria do Carmo de Andrade Nono - Conselho de Pós-Graduação
Dr. Plínio Carlos Alvalá - Centro de Ciência do Sistema Terrestre (CST)
DIGITAL LIBRARY:
Dr. Gerald Jean Francis Banon - Coordenação de Observação da Terra (OBT)
Clayton Martins Pereira - Serviço de Informação e Documentação (SID)
DOCUMENT REVIEW:
Simone Angélica Del Ducca Barbedo - Serviço de Informação e Documentação
(SID)
Yolanda Ribeiro da Silva Souza - Serviço de Informação e Documentação (SID)
ELECTRONIC EDITING:
Marcelo de Castro Pazos - Serviço de Informação e Documentação (SID)
André Luis Dias Fernandes - Serviço de Informação e Documentação (SID)

pubtc@sid.inpe.br

sid.inpe.br/mtc-m21b/2017/03.20.19.58-TDI

CHARACTERIZATION OF CHANGES IN WEB
SERVICES CONTRACTS BASED ON REPOSITORY

MINING

Diego Benincasa Fernandes Cavalcanti de Almeida

Dissertação de Mestrado do Curso
de Pós-Graduação em Computação
Aplicada, orientada pelo Prof. Dr.
Eduardo Martins Guerra.

URL of the original document:
<http://urlib.net/8JMKD3MGP3W34P/3NHQ3T8>

INPE
São José dos Campos

2017

http://urlib.net/8JMKD3MGP3W34P/3NHQ3T8

Cataloging in Publication Data
Almeida, Diego Benincasa Fernandes Cavalcanti de.

Cutter Characterization of changes in web services contracts based
on repository mining / Diego Benincasa Fernandes Cavalcanti de
Almeida. – São José dos Campos : INPE, 2017.

xxiv + 84 p. ; (sid.inpe.br/mtc-m21b/2017/03.20.19.58-TDI)

Dissertação (Mestrado em Computação Aplicada) – Instituto
Nacional de Pesquisas Espaciais, São José dos Campos, 2017.

Orientador : Eduardo Martins Guerra.

1. Software repository mining. 2. Web service 3. Service
contract. 4. Software adaptation. 5. Web service planning I. Título.

CDU 000.000

Esta obra foi licenciada sob uma Licença Creative Commons Atribuição-NãoComercial 3.0 Não
Adaptada.

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported
License.

ii

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/deed.pt_BR
http://creativecommons.org/licenses/by-nc/3.0/deed.pt_BR
http://creativecommons.org/licenses/by-nc/3.0/

ATENÇÃO! A FOLHA
DE APROVAÇÃO
SERÁ INCLUIDA
POSTERIORMENTE.
Mestrado em Computação Aplicada

iii

“The way is open to everyone, and if some win and achieve what
they want, it is not because they are predestined, but because they

have forced the obstacles with boldness and tenacity.”
(translated from Portuguese)

Henrique Coelho Neto
in “Breviário Cívico (Energia)”, 1921

v

Dedicatory

To Paula and Sofia, the family that God blessed me with.

vii

ACKNOWLEDGEMENTS

To God, for blessing me, giving me wisdom and confidence in my own abilities.

To my lovely wife Paula, for being always by my side, encouraging me and giving
me the necessary strength to keep going on.

To my future daughter Sofia, for being the biggest motivation for me to go anywhere
I want.

To the Brazilian Army Geographic Service Bureau (DSG), for believing in my
abilities and designating me to take this master degree course.

To my advisor, for always being supportive and helping me in every step towards
the conclusion of the research.

And, finally, to everyone that stood by me with a sincere friendship.

Thank you all. You have made me a better professional and a better person.

God bless all of us.

ix

ABSTRACT

During a software system life cycle, project modifications occur for different reasons,
either for natural evolution or requirements readjustment. Regarding web services,
communication contracts modifications are equally common, which induce the need
for adaptation in every system node, from the service consumers to the providers.
More significant those changes are, greater the efforts required for this adjustment.
To help reducing the contracts changing impact over software source code, easy-
to-adapt systems can be designed in order to minimize the application remodeling
effort. However, to make this approach possible, it is necessary to understand how
those contract changes occur, analyzing the most common modification types and
how often they happen. In this sense, this dissertation undertakes an evaluation of
the change history of different open-source projects whose web service contracts are
defined using documents in Web Service Description Language (WSDL) format.
Using software repository mining with MetricMiner tool, the behavior of four
modification types (addition, removal, relocation and refactoring) that occur to four
XML element types (xs:element, xs:attribute, xs:complexType and xs:import)
of contracts schemas was analyzed, in a universe of 139 projects whose source-codes
are hosted at GitHub. As a result of this study, conclusions were that modifications
of types addition and removal were more frequent than the others and take place
in about 20% of verified revisions, and that a great amount of commits – the act of
recording file changings to the repository and creating a new file revision – are related
to a small number of changings in contracts. Such results indicate that modifications
tend to be spread in many revisions and that a significant amount of changes are
related to inclusion or exclusion of exchanged information in contracts. Conclusions
obtained serve as input to the planning of new web services and to the maintenance
of existing ones, giving important knowledge about services evolution which helps
reducing or even avoiding excessive adaptation effort of both clients and provides
with the natural evolution of contracts.

Keywords: Software repository mining. Web services. Service contract. Software
adaptation. Web service planning.

xi

CARACTERIZAÇÃO DE MUDANÇAS EM CONTRATOS DE
SERVIÇOS WEB BASEADA EM MINERAÇÃO DE REPOSITÓRIO

RESUMO

Durante o ciclo de vida de um sistema computacional, modificações no projeto
ocorrem por diferentes motivos, quer sejam por necessidade de evolução ou para
readequação aos requisitos. No que diz respeito a serviços web, modificações nos
contratos de comunicação são igualmente comuns, o que causa a necessidade
de adaptação de todos os agentes do sistema, desde os consumidores até os
provedores dos serviços. Quanto mais significativas forem tais mudanças, maior
será o esforço necessário para o ajuste. Para reduzir o impacto das alterações
dos contratos sobre o código-fonte das aplicações, sistemas mais adaptáveis podem
ser desenvolvidos de modo a minimizar o esforço de remodelagem da aplicação
à nova versão do contrato. Contudo, para que tal abordagem seja possível, é
necessário entender como tais mudanças em contratos ocorrem, analisando os tipos
mais comuns de alterações e a frequência com que acontecem. Neste sentido,
esta dissertação realiza uma avaliação do histórico de mudanças de diferentes
projetos cujos contratos de serviços web são definidos por meio de documentos
em formato Web Service Description Language (WSDL). Utilizando mineração de
repositório com a ferramenta MetricMiner, foi analisado o comportamento de quatro
tipos de modificações (adição, remoção, realocação e refatoração) que ocorrem em
quatro tipos de elementos XML (xs:element, xs:attribute, xs:complexType e
xs:import) dos esquemas dos contratos, num universo de 139 projetos cujos códigos-
fonte estão hospedados no GitHub. Como resultado deste estudo, concluiu-se que
modificações dos tipos adição e remoção são bem mais frequentes que as outras e
que ocorrem em cerca de 20% das revisões verificadas, além de que grande parte dos
commits – ato de gravar no repositório alterações em arquivos, criando novas revisões
dos mesmos – estão relacionados a poucas alterações dos contratos. Os resultados
indicam que as modificações tendem a se espalhar por várias revisões e que parcela
significante de mudanças está relacionada com inclusão ou exclusão de informações
trafegadas em contratos. As conclusões obtidas servem de insumo ao planejamento
de novos serviços web e de manutenção dos já existentes, fornecendo conhecimento
importante sobre a evolução dos serviços que auxilia a reduzir ou mesmo evitar
esforço demasiado de adaptação tanto de clientes quando de provedores quando da
natural evolução dos contratos.

Palavras-chave: Mineração de repositório de software. serviços web. contratos de
serviços web. Adaptação de software. Planejamento de serviço web.

xiii

LIST OF FIGURES

Page

2.1 SOA components and their relation . 12

3.1 Percentage of commits where changes in each container type were found 27
3.2 Ratio between total number of each container type modification and the

number of commits where those changes occurred 28
3.3 Quantities of containers through XSD modification commits for project

OpenNMS, file users.xsd . 29
3.4 Quantities of containers through XSD modification

commits for project SOCIETIES-Platform, file
org.societies.api.internal.schema.privacytrust.privacyprotection
.model.privacypolicy.xsd . 30

3.5 Quantities of containers through XSD modification commits for project
spring-ws, file schema.xsd . 30

4.1 Characterization of projects selected at Google BigQuery 42
4.2 Percentage of projects with respect to the amount of WSDL/XSD

contracts with more than five revisions 43
4.3 Contracts with more than five revisions with respect to the ones that do

not satisfy this criteria . 44
4.4 Quantity of projects by 5+ revisions percentage quartiles 45
4.5 SchemaCompare output summary . 47
4.6 SchemaCompare output summary (absolute numbers) 47
4.7 Accumulated amount of files in respect to the quantity of revisions . . . 48

5.1 Percentage of revisions with considered modifications 49
5.2 Contracts revisions distribution according to exchanged information

changing . 51
5.3 Distribution of modification types that change WSDL/XSD exchanged

information . 52
5.4 Distribution of modification types that change WSDL/XSD semantic . . 53
5.5 Distribution of modification types that change WSDL/XSD semantic –

accumulated . 54

xv

LIST OF TABLES

Page

3.1 Selected projects to perform the study 26
3.2 Raw metric data extracted from projects 27

4.1 XSDMiner2 and SchemaCompare filtering summary for all projects 41
4.2 Step-by-step projects filtering after Google BigQuery selection 42
4.3 Percentage of projects with respect to the amount of WSDL/XSD

contracts with more than five revisions: data table 43
4.4 Analyzed changes . 45
4.5 SchemaCompare output summary . 47

xvii

LIST OF LISTINGS

Page

2.1 Example of WSDL document . 13
2.2 Example of XML document . 16
2.3 XML schema for the given XML example 17
2.4 Implementation example of class Study 21
2.5 Example of processor implementation to be used by MetricMiner . . . 21
3.1 XSDMiner code snippet: the Study class implementation 25
4.1 Google BigQuery query string to select projects with WSDL

documents in their repository . 36
4.2 XSDMiner2 code snippet, with some parts excluded 38
4.3 SchemaCompare code snippet, with some parts excluded 38
4.4 DiffBuilder class from XMLUnit code snippet 46

xix

LIST OF ABBREVIATIONS

CONCAR – Brazilian National Cartography Committee
DSG – Brazilian Army Geographic Service Bureau
GIS – Geographic Information System
GWS – Geospatial Web Services
INDE – Brazilian National Spatial Data Infrastructure
INPE – National Institute for Space Research
MSR – Mining Software Repositories
OGC – Open Geospatial Consortium
REST – Representational State Transfer
SOA – Service Oriented Architecture
SOAP – Simple Object Access Protocol
W3C – World Wide Web Consortium
WSDL – Web Services Description Language
XML – eXtended Markup Language
XSD – XML Schema Definition
XSLT – eXtensible Stylesheet Language for Transformation

xxi

CONTENTS

Page

1 INTRODUCTION . 1
1.1 Objective . 2
1.2 Research methodology . 2
1.3 Relevance for computer science . 4
1.4 Relevance for geographic information science 5
1.5 Relevance for the National Institute for Space Research (INPE) 6
1.6 Originality . 7
1.7 Document structure . 9

2 FUNDAMENTALS . 11
2.1 Service Oriented Architecture (SOA) . 11
2.2 SOAP . 13
2.3 REST . 15
2.4 XML and web services . 15
2.5 Web Service Development . 18
2.6 Mining Software Repositories (MSR) . 19
2.6.1 MetricMiner . 20

3 PRELIMINARY STUDY . 23
3.1 Research questions . 23
3.2 Study methodology . 23
3.3 Implementation . 25
3.4 Study execution . 26
3.5 Results and analysis . 26
3.5.1 Answering the research questions . 31
3.6 Threats to validity . 31
3.7 Conclusions . 32

4 RESEARCH DESIGN AND EXECUTION 33
4.1 Research questions . 33
4.2 Study methodology . 34
4.3 Projects selection . 36
4.4 Metrics and analysis implementation . 37

xxiii

4.5 Data extraction execution . 40
4.5.1 Data validation . 40
4.5.2 Projects profiles . 42
4.5.3 Contracts changes analysis . 45
4.5.4 XSDMiner2 and SchemaCompare data classification 48

5 RESEARCH RESULTS . 49
5.1 RQ1 – What is the occurrence rate of each XSD modification type? . . . 49
5.2 RQ2 – With which pace XSD modifications include or exclude information? 50
5.3 RQ3 – How is the distribution of modifications among commits? 52

6 CONCLUSIONS . 55
6.1 Contributions . 56
6.2 Future work . 57

REFERENCES . 59

APPENDIX A – TOTAL CONTRACTS REVISIONSWITH EACH
TYPE OF MODIFICATION PER PROJECT 65

APPENDIX B – STATISTICS FOR MODIFICATION
QUANTITIES PER CONTRACTS AMONG COMMITS 73

APPENDIX C – STATISTICS FOR CONTRACTS MODIFIED
PER COMMIT . 79

xxiv

1 INTRODUCTION

Integration is an important trend in a complex business network. Many companies
develop and use their systems to supply different needs, like production control,
data management or communication, based on the concept of integrating diverse
components into a single solution. At the Brazilian Army, for example, a system to
manage troops in campaign called “C2 em Combate” is developed over a modular
architecture, where each module is responsible for a specific task – graphical
user interface, geographic information management and processing, sensor data
gathering, among others. A popular solution to achieve integration is the use of a
Service Oriented Architecture (SOA), which acts as the basis for the computational
systems creation, where each service provides a piece of functionality to be integrated
in a given process. SOA is a reference architecture which aims to create functional
modules called services, with low coupling and favouring code reuse (SAMPAIO,
2006).

In distributed computer systems, services that provide information over computer
networks are known as web services. “A Web service is a software system designed to
support interoperable machine-to-machine interaction over a network” (W3C, 2004a).
To make this possible, data must be exchanged using standardized messages, created
using a structure and a vocabulary understandable by both communication nodes.
These definitions are established in documents often referred to as “contracts”, as
they create the rules for the correct composition and interpretation of messages. In
other words, the contract defines how nodes should interact in a SOA environment.

Web services messages are created using standard document formats, and a large
number of those messages are based on the eXtended Markup Language (XML). The
contracts that define XML messages vocabulary and structure are also created using
a standard, known as XML Schema Definition (XSD). In fact, the term “contract”
in this context is also referred to as “schema”. According to W3C (2004b), XSD
declares the vocabularies shared by machines and that represent the communication
rules established by people, defining the structure, content and semantics of the
exchanged documents. Complementary to that, Web Services Description Language
(WSDL) standard provides means to define the operations supported by a web
service (WEERAWARANA. et al., 2001), thus being mandatory that clients also know
the existence of WSDL documents before making requests. It is relevant to mention
that those standards are defined by the World Wide Web Consortium (W3C).

During software system development life cycle, changes occur in source code, even by

1

the introduction of new features, or due to modifications in existing ones. In a system
build upon web services whose contracts are defined before implementation, changes
that happen in XSD contracts impact services providers and consumers. A change
in the contract delivers a change in the message format, and both service providers
and consumers must adapt to this in order to maintain the communication. These
contract changes can affect different systems, which might be developed by different
teams and even by different institutions. Therefore, the extent and frequency of
those modifications can influence the rate that system nodes need to adapt, since
changes in contracts are expensive as they can affect several systems. If adaptation
is not properly performed, integration can be compromised.

A recent study revealed that changes in web services contracts tend to often occur
and they do impact on source code (FRANÇA et al., 2015). However, no research has
been undertaken to address those changes and classify them according to frequency
and location of occurrence. As so, some questions remain unanswered, like: (Q1)
“How usual element addition/removal is?” ; (Q2) “Modifications changes document
semantics or happen due to refactoring?” ; (Q3) “Are modifications well distributed
among documents and commits or concentrated in fewer ones?”. Despite those – and
many other – questions, studies lack on trying to answer them.

Understanding the pace of changes in contracts can lead to a redesign of development
practices or to the adoption of architectures capable of adapting to them. If those
modifications are mapped – or measured – accordingly, one can undertake a wider
contract adjustment to reduce the frequency of changes, ultimately leading to more
stable or more adaptable client-server integration.

1.1 Objective

The goal of the present work is:

To study the evolution of XML document formats used by web services contracts
during development life cycle, aiming to capture the most frequent kinds of
modifications in XSD schemas used by WSDL documents and to describe the
changing behavior of projects contracts.

1.2 Research methodology

To achieve the main purpose, some issues need to be addressed. Those issues are
treated as intermediate goals, each of them detailed in this section.

2

In order to analyze the changes in WSDL documents, some mechanisms need to be
defined. As so, simple metrics are established, such as number of XML elements and
attributes. Those metrics help to evaluate the pace of modifications and might lead
to a changing pattern detection.

The defined metrics need to be integrated into a software system, in order to extract
the desired information from XSD schemas. Using Java programming language, the
mechanism to extract those metrics were materialized as Java classes. At first, in
a preliminary study, only the results of metric extraction over XSD files inside a
few “test projects” (selected only by the criteria of having XSD files inside their
repository) are presented, as well as some simple inferences over them, to verify
the applicability of the analysis techniques defined. After that, in-depth analysis
were performed to gather specific information about the type of each modification.
This second study included a wider range of web services projects containing WSDL
documents.

To extract the desired information for the study, it is necessary to apply the defined
metrics in several versions of WSDL documents present in real projects. This work
focused on projects that define or make use of web services, using XSD schemas
to specify messages elements and their types, inside or outside WSDL documents.
Taking this constraint into account, several projects from GitHub – a web-hosted
version control system – were selected. Based on the research goals, a minimum
number of changes in WSDL files was defined as a threshold to establish significant
inferences.

Once the projects were selected, the implemented metrics were integrated into a
tool named MetricMiner (ANICHE et al., 2013) that extracts metrics from several
versions of files hosted at a GitHub software repository, generating a historical
database of them. Using MetricMiner, it was possible to evaluate the evolution
of the selected metrics. Furthermore, the generated metrics database can be used
for more complex analysis in future works, such as changing pattern detection or
modification tendencies.

After the previous results, a new Java class was implemented to check the
modifications of WSDL and XSD files over two consecutive versions of them,
classifying the types of changes that happen. Examples of changes are: renaming of
an element, new element or attribute, and element removal. After implementation,
the class was coupled to MetricMiner, in order to obtain such information for each
consecutive pair of WSDL file revisions.

3

Finally, with all the results gathered, a detailed analysis over them was proceeded.
The goal was to evaluate the changing frequency for each modification type,
looking for common changing characteristics and for possible similarities of those
characteristics over different projects. Such characteristics include, for example,
the average amount of changes and of modified documents per commit (the act
of recording file changings to the repository and creating a new file revision).
Ultimately, this study aims to answer the following research questions:

• RQ1 – What is the occurrence rate of each XSD modification type?

• RQ2 – With which pace XSD modifications change document semantics?

• RQ3 – How is the distribution of modifications among commits?

1.3 Relevance for computer science

Regarding web services, contract changes might – and usually do – impact on data
retrieval, notably when the exchanged messages alter their schemas. Considering
that any software system naturally evolves and changes during its life cycle, the
development of a web service should take this fact into account, but understanding
how those changes occur and how often they happen is crucial in this task. Changing
in XSD schemas can be difficult to handle, as they usually affect project source code
(FRANÇA et al., 2015) and may also require a large set of changes both in service
consumers and providers.

Different solutions to contract versioning is proposed in the literature, but none
of them tries to understand the motivation behind the changes or their behavior
– they assume that the changes occur and give means to deal with them. For
example, Leitner et al. (2008) proposes the use of a service proxy that makes the
correspondence between client requisition and some available service version, but
this solution forces every service version to be up and running and proxy to be
updated every time service is updated. An alternative to these particularities is
proposed by Frank et al. (2008): the middleware to be used has a compilation of
distinct service interface proxies, created every time the service changes its interface.
In this scenario, each proxy correlates client requests to one specific service version
(and subversions), reducing proxy update frequency.

If a contract changing tendency is known beforehand, developers can design
adaptive systems prepared to deal with contract changes through time, favouring

4

system development optimization and strengthening system requisites compliance.
Moreover, information regarding the frequency of XSD modifications that do not
usually change semantics can play an important role on the system design, and
knowing which kind of modification is more likely to occur in elements with certain
characteristics can help developers to prevent those changes. Finally, understanding
the behavior of contract changes can direct the project development planning
towards a better changing schedule, avoiding a numerous amount of unnecessary
revisions, reducing the efforts of service nodes to readjust their systems to new
service versions and promoting a more stable interoperability.

1.4 Relevance for geographic information science

Geospatial data is constantly being produced by many organizations and individuals
around the world using different technologies and for several purposes, from
cartographic mapping to knowledge discovery. This generates a huge load of
geoinformation, which is usually large in digital size. Use of data from many providers
can be done by importing a copy of them to the local file system or by remotely
querying and retrieving them as needed. The former procedure is recommended when
it is desirable to work offline, but it consumes disk space and often brings unnecessary
data along with it. Besides, local copy is not automatically synchronized. The
latter procedure is usually taken by distributed Geographic Information Systems
(GIS), where no duplicated data is created, which keeps them always up-to-date
but requires a permanent network connection to retrieve data. Another benefit of
querying data remotely before their retrieval is the ability to select only information
of interest before loading them into local systems, reducing disk storage usage and
network traffic.

In order to provide data online, the Open Geospatial Consortium (OGC) defined
specifications (OGC, 2006) to create web services for querying and retrieving raster
and vector geospatial data over web – known as Geospatial Web Services (GWS).
Such specifications are taken as standards for the development of the so-called OGC
Web Services (OWS). OGC does not implement any of these, but specifies the
requirements for services implementation, such as needed operations service should
provide to work correctly. Examples of geospatial systems based on OGC standards
are the Brazilian National Spatial Data Infrastructure (INDE) (CINDE, 2010) and
the Brazilian Army Geographic Database1.

1Available at:http://www.geoportal.eb.mil.br/index.php/bdgex-1/
bdgex-generalidades.

5

http://www.geoportal.eb.mil.br/index.php/bdgex-1/bdgex-generalidades
http://www.geoportal.eb.mil.br/index.php/bdgex-1/bdgex-generalidades

Despite the fact that OGC defines standards for every part of OWS design and
implementation, data provided by such services might be – and usually are –
structured not following global standards. This is a common scenario, since distinct
geospatial data providers often uses non-standardized infrastructures, which are
designed according to their own requirements. To avoid data compatibility issues,
initiatives try to create standardized data structures, like those proposed by the
Brazilian Army Geographic Service Bureau (DSG) and homologated by Brazilian
National Cartography Committee (CONCAR) regarding cartographic mapping and
inherent vector data (DSG, 2010). However, even with those specifications and
considering every possible scenario, data retrieved by different OWS providers might
not be equally structured, and so GIS solutions and data aggregators need to address
this problem when merging data from different providers.

Geospatial data specifications are not unmutable and is continuously evolving
to address new incomings. Following these modifications are the web services
contracts changing, that need to adapt to new versions of the specifications.
Understanding the behavior of contracts evolution helps to develop services clients
ready to deal with the modifications that rise among different revisions of the
specifications. This is of utmost importance for GIS applications and for integrated
data infrastructures like the Brazilian National Spatial Data Infrastructure (INDE)
that uses GWS to maintain interoperability between data providers nodes and the
central aggregator. With the information of the most common characteristics and
frequency of modifications in GWS contracts, developers can implement easy-to-
adapt GIS solutions in order to keep the quality of knowledge discovery using spatial
data from distributed systems. Also, knowing beforehand how contracts tend to
evolve helps their maintainers to design a more suitable evolution agenda to prevent
communication breaks. This could be done by extending the present research and
applying similar methodology and tools.

1.5 Relevance for the National Institute for Space Research (INPE)

Being a technology center for space research, INPE holds an extensive list of projects,
from informatics to astronomy and remote sensing. Specifically regarding the latter,
many studies focus on computational technologies for geoprocessing, developing
libraries and softwares for this purpose.

The main computer library maintained by INPE regarding geospatial data is
TerraLib (CÂMARA et al., 2008), which provides many geoprocessing tools that can
be used for Geographic Information Systems (GIS) development. As an example

6

of its usage, INPE developed TerraView2, an open-source GIS environment with
a wide range of geoprocessing tools. On top of TerraLib, INPE builds solutions
for environment monitoring and geospatial data manipulation and dissemination.
Examples of these solutions are: TerraOGC, an extension that enables TerraLib
to access and retrieve spatial data from OWS providers; TerraMA2, a platform to
develop environment risk monitoring systems; TerraHidro, a system for distributed
hidrological modeling. TerraLib and the systems build on top of it are extensively
used, and researches using them are vastly found in the literature, like the ones
proceeded by Crepani and Medeiros (2005), SILVA et al. (2007), Lima et al. (2012),
Bendini et al. (2014), Barbosa and Silva (2014), Rosim et al. (2014), Rosim et al.
(2012), among others.

OWS standards do not experience evolution in a regular basis, which can be verified
checking OGC website. However, not all demands fit in those standards, as there
are web services not compliant to OGC specifications. In case of changings in
OGC WSDL schemas, every project that relies on them – including TerraLib with
TerraOGC – might be impacted, and understanding the changes more likely to
occur can help to adapt the systems to reflect those modifications. Also, similar
interpretation can be obtained from non-OGC GWS.

1.6 Originality

Search for similar studies over the literature leads to very few related researches.
Some of the most recent studies are described here as reference, but none of them
have the same goals as this dissertation.

França et al. (2015) presents a study over the impact of web service contracts
changing on the software system source code. Through historical data mining
and analysis on software repositories, it gathers statistics for changing frequency
of XSD files, along with information about the most usual modifications and its
concentration by developer. Those metrics are defined by the authors and aim to
establish the influence of XSD changes on source code, relating XSD modifications
quantity with source code modifications quantity. As a final result, the authors
deduce that contracts modifications are frequent and find evidences of huge impact
on source code. That study enforces the need to better understand the contract
modifications in order to develop web services prepared to deal with these changes.
It is relevant to mention that the comparison between XSD modifications and source

2Available at: www.dpi.inpe.br/terraview.

7

www.dpi.inpe.br/terraview

code changings were done manually and with few projects, and so it is not able to
generalize answers to any research questions listed at Section 1.2.

Qiu et al. (2013), endeavors a study on the evolution of schemas in relational
databases, associating the modifications with the database queries created. The
research classifies the modifications and also gathers some statistics to measure the
impact of schema changing on those queries. It is not clear whether the authors use
some kind of software to help with the analysis or not, but some proceedings seems
to be similar to the ones that will be undertaken in the present work, like historical
analysis, classification of changes and statistical comparison of modifications. Like
França et al. (2015), it aims to “measure” the impact of schema changes at code-
level and is related to this dissertation by the inner-observation of modifications
and discrimination of different change types and occurrence frequency in schemas,
regarding that the present study analyzes XSD schemas used by WSDL documents.

Papazoglou (2008) introduces a change-oriented service life cycle methodology to
address the problems that arise from contracts versioning. It provides ways to allow
services to be readjusted as changes occur, as well as common tools to reduce
drawbacks and improve development agility. Its goal is to deal with contracts changes
and overcome the problems and keep interoperability. Like the other researches, it
does not intend to understand the modifications, but to accept their existence and
to solve miscompatibility.

Romano and Pinzger (2012) present a research regarding web services evolution.
Through the implemented WSDLDiff tool, the study aims to identify common
characteristics in contracts evolution, by analyzing the modification behavior of
some types of XML elements. Despite being very similar to the proposal of this
dissertation, it does not extend much the analysis, concentrating the efforts on few
changing types. Also, it only analyzes four web service projects, which is not enough
to generalize the results. It can be said that this is a starting point for the present
research.

Despite the aforementioned researches, few others could be found dealing with the
changes in contracts of web services and trying to understand where and how those
changes occur. With that said, this can be considered an original research.

8

1.7 Document structure

To organize the study, this dissertation is organized in several chapters, each one
with a particular goal. The following lines describes each chapter.

Chapter 2 presents the knowledge basis that guides the study. It describes and
explains needed concepts to understand the undertaken analysis and its results.

Chapter 3 shows the design, the methodology and the results of a preliminary
study directed to introduce the main research as described at Chapter 1. This study
defines simple metrics to be applied over XSD documents and uses them to collect
information about the frequency of modifications of three XSD container types.
Being an introductory research, it only considers a short number of projects that
uses or defines XSD documents. With the obtained results, some research questions
are answered, which supports the need of further investigations on contract changes.

Chapter 4 describes the following steps towards the achievement of dissertation
goals. It discriminates the methodology applied, the code implementation needed
and the results expected.

Chapter 5 presents the results obtained from the application of the methodology. It
describes the analysis over data gathered from code implementation by answering
the research questions defined in Section 3.2.

Chapter 6 come up with the conclusions of the study based on the answers of the
research questions given in Chapter 5. It also suggests future researches based on
the results and methodology of this study

9

2 FUNDAMENTALS

This chapter presents the concepts that should be known in order to understand
the analysis proceeded through the dissertation. The following sections give the
necessary knowledge about topics underlying this research.

Section 2.1 shows the principles regarding the Service Oriented Architecture (SOA)
and its use in computer technology. Section 2.2 and Section 2.3 describe two
materializations of SOA principles. Section 2.4 explains the uses of XML in the
context of SOA and web services. Section 2.5 presents a description of the different
means that a web service can be developed. Finally, Section 2.6 gives an explanation
about the techniques of mining software repositories.

2.1 Service Oriented Architecture (SOA)

In the context of architectures formed by several systems, efforts are directed to
integration and collaboration. Reuse of already available data avoids reworking and
redundancy of potentially incoherent information. In order to allow data sharing,
systems were designed in such a way that a consumer could ask for data to a provider,
assuming that the latter has the required information. The provenance of available
data to eligible consumers creates a so-called Service-Oriented Architecture (SOA),
where providers have well defined communication roles and interact with each other
using standardized protocols, often called contracts. Figure 2.1 illustrates the main
concepts of SOA.

Formally, SOA is defined as “any design or specification for sharing data
and/or processes in a network or other computing environment” (CONNER;

ROBINSON, 2007). As so, it presents an arrangement of enclosed, independent and
well-established computational functionalities designed to provide some kind of
knowledge to each other. To reach this, it follows a large set of best practices (PATIG,
2011), from which some could be highlighted: (a) reusability – service functionality
must be generic enough to be used in scenarios different from those imagined for
it at first; (b) statelessness – services undertake their entire processes with the
information provided by its client only, without information being kept within it
after a call-and-response procedure; (c) standardized contract – service and consumer
must share a common “communication language”, in order to provide a well-known
technical access interface composed by operations and their structures; (d) loose
coupling – contracts must be client-independent and implementation-independent;
(e) autonomy – services have to be independent and not rely on the responses from

11

Figure 2.1 - SOA components and their relation

SOURCE: adapted from Rotem-Gal-Oz (2007).

other services; and (f) discoverability – services should be described by meta data,
in order to be discovered and interpreted by clients.

In order to materialize SOA concepts and principles in computer systems, there
are currently many technologies available. Most of them, however, are based on
some kind of message exchange, where the message contents depends on the
communication direction: if it is a request message, it must call for the required
service functionality providing the necessary request parameters; if it is a response
message, it should deliver the requested information in a way that the consumer can
interpret and manipulate it by its own. Among the available technologies, Simple
Object Access Protocol (SOAP) and Representational State Transfer (REST) are
two of the most used ones regarding web services.

It should be pointed out that there are two main approaches for implementing web
services: the “contract first” and the “contract last”. According to Pautasso et al.
(2008), “contract first” approach starts the service development by the specification
of its interface, and “contract last” automatically generates contracts from previous
implemented services. In “contract first” development, implementation follows a
specification of what operations a service should provide, and changes in this
specification might have huge impact on source code. That is the main reason
why understanding modifications in such contracts is important to the service
development and maintenance.

12

2.2 SOAP

According to W3C (2007), SOAP “is a lightweight protocol intended for exchanging
structured information in a decentralized, distributed environment”. It is a
framework that enables systems to interoperate using customized and well-defined
messages. Those, in SOAP, are structured as Extensible Markup Language (XML)
documents, which presents one of its greater advantages as many different systems
could create and understand messages easily.

SOAP for web services are described using Web Services Description Language
(WSDL) documents that inform its name, lists its available functionalities and
details needed request parameters and response values. WSDL is written in XML
and is a W3C standard (WEERAWARANA. et al., 2001), but its use is not limited to
SOAP, although only a few bindings are described in the official documentation. It
can use distinct XSD documents to describe the elements used for service operations
definition or include the schema in it as XSD. A brief example1 of a WSDL file is
presented in Listing 2.1.

Listing 2.1 - Example of WSDL document� �
1 <definitions name="HelloService"
2 targetNamespace="http://www.examples.com/wsdl/HelloService.wsdl"
3 xmlns="http://schemas.xmlsoap.org/wsdl/"
4 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
5 xmlns:tns="http://www.examples.com/wsdl/HelloService.wsdl"
6 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
7

8 <message name="SayHelloRequest">
9 <part name="firstName" type="xsd:string"/>

10 </message>
11

12 <message name="SayHelloResponse">
13 <part name="greeting" type="xsd:string"/>
14 </message>
15

16 <portType name="Hello_PortType">
17 <operation name="sayHello">
18 <input message="tns:SayHelloRequest"/>
19 <output message="tns:SayHelloResponse"/>
20 </operation>
21 </portType>
22

23 <binding name="Hello_Binding" type="tns:Hello_PortType">
24 <soap:binding style="rpc"
25 transport="http://schemas.xmlsoap.org/soap/http"/>
26 <operation name="sayHello">
27 <soap:operation soapAction="sayHello"/>
28 <input>

1Extracted from: https://www.tutorialspoint.com/wsdl/wsdl_example.htm.

13

https://www.tutorialspoint.com/wsdl/wsdl_example.htm

29 <soap:body
30 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
31 namespace="urn:examples:helloservice"
32 use="encoded"/>
33 </input>
34

35 <output>
36 <soap:body
37 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
38 namespace="urn:examples:helloservice"
39 use="encoded"/>
40 </output>
41 </operation>
42 </binding>
43

44 <service name="Hello_Service">
45 <documentation>WSDL File for HelloService</documentation>
46 <port binding="tns:Hello_Binding" name="Hello_Port">
47 <soap:address
48 location="http://www.examples.com/SayHello/"/>
49 </port>
50 </service>
51 </definitions>� �
SOAP is commonly related to web services, but its use is not limited to this. SOAP
messages can be exchanged through many different protocols as they are XML
documents structured according to a XML Schema Definition (XSD) specification.
Any protocol that can transport these messages can be used, including, but not
limited to, Hypertext Transfer Protocol (HTTP).

Although it is a well established standard, SOAP has many limitations of
use. Being XML documents, serialization and deserialization can consume a
considerable amount of time in systems with a large amount of requests. Other
fact is that as messages have to adhere to a contract (represented by XSD
documents), communication might be broken if this contract changes, compromising
interoperability. Nevertheless, in complex systems where stronger data structures are
required, SOAP is the best choice as messages share a common semantic and will
hardly be misunderstood due to distinct contracts.

The scenario where different contract versions are used can be bypassed using an
Enterprise Service Bus (ESB), a middleware tool that handles heterogeneity and
takes care of the message conversion between compatible contracts to maintain
communication (CHRISTEN, 2009). According to Menge (2007), ESB is a “message-
based, distributed integration infrastructure that provides routing, invocation and
mediation services” which eases the interactions between distributed applications

14

and services in such a way that avoids communication failures. It is not a trivial
task to design an ESB, as it must be modelled and implemented according to the
applications involved in the composed solution.

2.3 REST

REST architecture is another type of communication bridge that makes use of named
resources over the web. Those names are represented by fully qualified Uniform
Resource Identifiers (URI), Uniform Resource Locators (URL) and/or Uniform
Resource Names (URN). It differs from SOAP fundamentally by being based on
HTTP requests and fully using its capabilities, and response messages do not have
to be compliant to a predefined structural contract. As so, many serializations exists,
like XML and JavaScript Object Notation (JSON).

Services that are fully compliant to the REST principles listed by Pautasso et al.
(2008) are usually called RESTful. Those principles are: (a) resource identification
through URI; (b) uniform interface; (c) self-descriptive messages; and (d) stateful
interactions through hyperlinks. The use of those principles in a web service
development allows a decentralized infrastructure to be constructed using common
HTTP standards that are lightweight, well-established around the world and easy
to implement and maintain. Those are only basic principles, and the complete set
of them are listed and explained in details by Fielding (2000).

Another feature of RESTful services that should be highlighted is their capability of
describing resource information through a variety of formats (PAUTASSO et al., 2008).
Messages that carry on this data are self-descriptive and do not have do adhere to
a service contract like SOAP services. Interpretation and usage of data provided by
RESTful services must be treated by the client, and so it requests information using
the most suitable serialization for its use (for example JSON, XML, PDF or plain
text).

2.4 XML and web services

As stated earlier, web services use messaging protocols to exchange data. SOAP
services relies on XML messages to communicate, while RESTful services can use
this serialization but are not restricted to it. In both scenarios XML can be present,
either as requirement or option.

XML stands for Extensible Markup Language. As its name suggests it is a format for
creating documents hierarchically structured in order to store and transport data

15

across communication nodes. Being self-descriptive and flexible – as it does not use
predefined tags – it can be easily adapted to the system needs. XML is derived from
the Standard Generalized Markup Language, or simply SGML (ISO, 1986), and is a
World Wide Web Consortium (W3C) recommendation (BRAY et al., 1998).

Inside XML documents, information is enclosed in containers called tags, and data
described in tags are denominated entities. Needed entities are included in the XML
message according to the requirements of every communication node and their
structure, as well as the description vocabulary, should be known beforehand or
provided by the message itself. In the latter case, it is commonly used a XML Schema
Definition (XSD) document, which acts as a contract between the message sender
and each receiver. With XSD, XML messages could be validated and considered
well-formed or not by XML processors, avoiding problems that can compromise
interoperability between applications. It is relevant to know that XSD is also a
W3C recommendation (W3C, 2004b).

Listing 2.2 presents an example of a XML document that describes a ship order,
while Listing 2.3 shows the XML schema of this document2. It is clear that XML
and XSD provides organization to information being transported. The example
illustrates that entities have their own definitions (name, type and attributes) and
structural placement inside XML, which favors the integration enforcement between
communication nodes.

Listing 2.2 - Example of XML document� �
1 <?xml version="1.0" encoding="UTF-8"?>
2 <shiporder orderid="889923"
3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
4 xsi:noNamespaceSchemaLocation="shiporder.xsd">
5 <orderperson>John Smith</orderperson>
6 <shipto>
7 <name>Ola Nordmann</name>
8 <address>Langgt 23</address>
9 <city>4000 Stavanger</city>

10 <country>Norway</country>
11 </shipto>
12 <item>
13 <title>Empire Burlesque</title>
14 <note>Special Edition</note>
15 <quantity>1</quantity>
16 <price>10.90</price>
17 </item>
18 <item>
19 <title>Hide your heart</title>
20 <quantity>1</quantity>
21 <price>9.90</price>

2Source: W3Schools. Available at: http://www.w3schools.com/xml/xml_whatis.asp

16

http://www.w3schools.com/xml/xml_whatis.asp

22 </item>
23 </shiporder>� �

Listing 2.3 - XML schema for the given XML example� �
1 <?xml version="1.0" encoding="UTF-8" ?>
2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
3 <xs:element name="shiporder">
4 <xs:complexType>
5 <xs:sequence>
6 <xs:element name="orderperson" type="xs:string"/>
7 <xs:element name="shipto">
8 <xs:complexType>
9 <xs:sequence>

10 <xs:element name="name" type="xs:string"/>
11 <xs:element name="address" type="xs:string"/>
12 <xs:element name="city" type="xs:string"/>
13 <xs:element name="country" type="xs:string"/>
14 </xs:sequence>
15 </xs:complexType>
16 </xs:element>
17 <xs:element name="item" maxOccurs="unbounded">
18 <xs:complexType>
19 <xs:sequence>
20 <xs:element name="title" type="xs:string"/>
21 <xs:element name="note" type="xs:string" minOccurs="0"/>
22 <xs:element name="quantity" type="xs:positiveInteger"/>
23 <xs:element name="price" type="xs:decimal"/>
24 </xs:sequence>
25 </xs:complexType>
26 </xs:element>
27 </xs:sequence>
28 <xs:attribute name="orderid" type="xs:string" use="required"/>
29 </xs:complexType>
30 </xs:element>
31 </xs:schema>� �
As said before, SOAP services uses XML to exchange messages. But besides that,
it also uses XML to fully describe the service, detailing each available operation
on them and how to request data. This is done using Web Service Description
Language (WSDL) documents, also a W3C recommendation (WEERAWARANA. et al.,
2001). Hence, two scenarios can be distinguished: (a) request and response messages
contains entities structured and defined by XSD documents; and (b) what can be
requested from the service and how the response will be given is described using
WSDL. WSDL are a special case of XSD, as it also defines things that can appear
inside XML messages and how it should appear.

RESTful services are not based on XML, but can serialize messages in XML
according to the client request. Due to this, they can use XSD to describe XML

17

entities like SOAP services. Being based on the concept of resources, RESTful
services do not have the need to have a service description document like WSDL
(but it can be used due to the flexibility of WSDL), and so the use of XSD is not
as common as in SOAP services.

2.5 Web Service Development

As mentioned in Section 2.1, a web service can be developed following two opposite
approaches: defining the contract in first place or automatically generating it after
the service implementation. The first approach focuses on the transported data
and on the message itself, and is used in scenarios where it is mandatory to
have a message exchanging standard and well defined operations regardless the
actual implementation. ON the other hand, the second approach focuses on service
implementation and code writing, and produces contracts just for interoperability
purposes.

The two aforementioned approaches are often known as “contract first” and
“contract last”, as stated by Pautasso et al. (2008). “Contract first” implementation
derives from the specification of the operations that service needs to provide, whereas
“contract last” establishment just exposes the source code classes and methods
as WSDL. Considering that clients must be constantly compliant to contracts
in order to consume the service, it is desirable that those contracts remains as
much unchanged over time as possible (of course, some changes might occur),
but only “contract first” approach allows the implementation of classes that deals
with distinct contract versions (POUTSMA et al., 2007). Furthermore, “contract last”
approach does not enable web services to reuse existing definitions, and also can
create a large number of contract versions since each code modification can impose
changings in the contract, compromising interoperability.

In a contract-first approach, logics and semantics regarding the data that
should be exchanged are structured according to XML standard, with its
definitions and particularities. This forces service providers and clients to suit
their implementations to these characteristics. On the other hand, in a contract-
last approach, contracts are derived from service implementation and generated
automatically. According to Poutsma et al. (2007), while contract-first method looses
coupling with implementation, contract-last technique brings some disadvantages,
like: (i) particularities of the code language used to implement the service might not
be easy adjustable to XML components, which might generate contracts hard to be
understandable; (ii) any change in service source code can propagate unnecessary

18

modifications to the contract, making clients have to change their implementations
to receive and interpret the messages.

Since “contract last” approach depends on the web service implementation model,
code-writing patterns and source code modification rate, it is easy to infer that
consumers of such services usually have to constantly adapt their systems to
each contract version. Besides, analysis over the automatically generated WSDL
documents do not represent a real service design modification analysis, which can
only be done over “contract first” developed web services.

2.6 Mining Software Repositories (MSR)

Much of the software development nowadays is made by updating code in software
repositories, mainly because version control systems can better administer code
changes and keep developers up-to-date with modifications. Regarding this, many
historical data are usually stored and increasingly used to perform some kind of
research. Primarily, historical data inside software repositories were used to track
defects, but several studies emerged from this, aiming to deal with other aspects in
software development like software design, architecture and reuse (HASSAN, 2004).
To retrieve and analyze historical data in software repositories, many solutions exists,
like the ones compared in the study undertaken by Olatunji et al. (2010). Despite
this, the industry do not take part in research regarding this kind of data, and so
researchers are not aware of industrial practices (GLASS, 2003).

Kagdi et al. (2007) points that the expression “mining software repositories” derives
from the fact that researchers use many approaches to extract proper information
from repositories and detect trends in software evolution, activities that are similar to
the ones related to data mining and knowledge discovery. These techniques can help
developers in decision making processes to depend less on their personal experience
and intuition and more on historical data analysis (HASSAN, 2004).

One of the many uses of MSR results is in the recommendation of practices and
source code that might need to be modified based on the change history of repository
files. Ying et al. (2004) shows an example of this need with a modification task
of Mozilla Web Browser project. By suggesting relevant files to be modified due
to changes in software code, MSR techniques can help to increase development
speed and quality, creating systems more likely to be consistent and adaptive to
evolutionary changes.

19

MSR is an evolving field of research and has numerous works published on the
literature. Abate et al. (2015) presents a tool that mines components metadata
to identify which components available at a repository cannot be installed on the
main system, using three project repositories to evaluate the correctness of the
tool. Regarding changes in applications, Ray et al. (2014) defines the concept of
unique changes and provides a method for identifying them in software project
history. Gala-Pérez et al. (2013) makes use of empirical metrics to check what
can be inferred from them for projects of the Apache Software Foundation. To
enable platform-independent software mining and metric visualization, Carvalho
et al. (2015) presents a REST web service implementation directed to such tasks,
in order to enable the development of service-oriented applications to mine and
visualize software data across the web. Those are just some examples of different
applications of MSR techniques.

2.6.1 MetricMiner

In order to proceed with MSR techniques over repositories, many solutions exists,
like the ones presented by Peters and Zaidman (2012), Spacco et al. (2005) and
Aniche et al. (2013). Here the focus will be on the latter, due to the fact that it can
analyze source code changes by incorporating user customized investigation code.

Aniche et al. (2013) presents MetricMiner, a framework written in Java code that can
be used to develop applications that perform deep analysis over GitHub repositories.
It runs code written by its user over different software revisions in order to capture
desired information for further analysis. Benefits from using MetricMiner relies
on its multi-thread facility, which can improve complex analysis performance over
repositories with huge amounts of files and/or revisions, and also by being highly
customisable, as virtually any study can be designed to be performed over source
code files. It must be pointed out that MetricMiner does not perform any kind
of analysis over the retrieved information, which is a responsibility entirely on the
researcher.

Listing 2.4 shows an example of how MetricMiner works3. The basic class Study
has a single method called execute, that starts the mining procedure according to
given parameters.

3Complete documentation and working examples are available in the official MetricMiner
website at http://www.metricminer.org.br/.

20

http://www.metricminer.org.br/

Listing 2.4 - Implementation example of class Study� �
1 public class MyStudy implements Study {
2 public static void main(String[] args) {
3 new MetricMiner2().start(new MyStudy());
4 }
5 @Override
6 public void execute() {
7 new RepositoryMining()
8 .in(<LIST OF PROJECTS>)
9 .through(<COMMITS>)

10 .process(<PROCESSOR>, <OUTPUT>)
11 .mine();
12 }
13 }� �
In the example above, in defines the GitHub projects that will be mined; through
establishes the range of commits to be considered; process passes to MetricMiner
the class that implements the metrics (the “processor”) to be retrieved from the
projects and the path where it should output the file with retrieved data; and mine
starts the process. An example of a processor4 is shown by Listing 2.5 (imports
hidden).

Listing 2.5 - Example of processor implementation to be used by MetricMiner� �
1 public class DevelopersVisitor implements CommitVisitor {
2 @Override
3 public void process(SCMRepository repo, Commit commit, PersistenceMechanism writer) {
4 writer.write(
5 commit.getHash(),
6 commit.getCommitter().getName()
7);
8 }
9 @Override

10 public String name() {
11 return "developers";
12 }
13 }� �
It should be highlighted that the processor class is not different from any ordinary
Java class. As so, it can define the procedures to be taken by MetricMiner inside it
and/or use methods defined by other Java imported classes.

4Code snippets are available in the official MetricMiner website at http://www.metricminer.
org.br.

21

http://www.metricminer.org.br
http://www.metricminer.org.br

3 PRELIMINARY STUDY

This chapter presents a starting study focused on some of the research questions
listed in Chapter 1. Through the analysis of simple metrics applied over some
projects repositories, it is verified how often changes occur in the number of basic
XSD containers and the relation of such frequencies among distinct projects. This
study was published in the 16th International Conference on Computational Science
and Its Applications (ICCSA) in 2016, with the title Evolution of XSD documents
and their variability during project life cycle: a preliminary study (ALMEIDA;

GUERRA, 2016).

3.1 Research questions

In order to make inference about the behaviour of projects changes during their life
cycles, some Preliminary Research Questions (PRQ) are defined, as follows:

• PRQ1 – What is the frequency of changes in the number of each XSD
basic container type (element, attribute and complexType)?

• PRQ2 – Do distinct projects have similar changing frequencies for each
XSD basic container type?

• PRQ3 – What is the number of XSD document versions where no changes
in the number of XSD basic container types are found?

3.2 Study methodology

To undergo this study, a short number of open-source projects hosted at GitHub
needs to be selected, as MetricMiner only works on GitHub repositories. The
selection criteria are as follows:

• Projects must have XSD documents in its repository;

• XSD documents must have enough modifications in the repository,
represented by the number of commits of each XSD files, which is defined
here as being at least five;

• Projects that defines or uses web services are desirable.

To evaluate projects, three simple metrics are defined, considering the number of
three XSD basic container types: element, attribute and complexType. Using

23

these metrics, the quantity of modifications in XSD documents are mapped by their
types (in elements, in attributes and in complex types). The documents used for this
evaluation are obtained by historical mining over the selected projects repositories,
in order to quantify each kind of change. Later in this dissertation, similar numbers,
obtained from WSDL documents, will help to check if there are changing patterns
in web services contracts during their development life cycles.

To achieve this first study proposal, the following information are retrieved from
projects, in order to gather the desired metrics and to organize data:

• HASH – Hash number of commit;

• REVCOMMIT – Serialized number of commit, starting with 0 (most
recent, or “Head”);

• FILENAME – Name of the analyzed file;

• MODCOUNT – Serialized number of modification index counter for
current file, starting with 0 (most recent);

• QTY_ELEMENTS – Quantity of <xs:element> tags in current file;

• QTY_ATTRIBUTES – Quantity of <xs:attribute> tags in current file;

• QTY_CTYPES – Quantity of <xs:complexType> tags in current file;

• MOD_ELEMENTS – Direction of growth in <xs:element> tag
quantity related to previous modification index, denoted by -1 for decrease,
0 for no change and 1 for increase;

• MOD_ATTRIBUTES – Same as above, but for <xs:attribute> tag;

• MOD_CTYPES – Same as above, but for <xs:complexType> tag;

In order to retrieve the aforementioned data, some code implementation is needed.
To extract metrics from XSD files, a simple Java package named XSDMiner
was written1 and coupled to MetricMiner (ANICHE et al., 2013) into a processor
for historical data mining over projects repositories. Running MetricMiner with
XSDMiner outputs a Comma Separated Values (CSV) file with the desired
information.

1XSDMiner is freely available as an Eclipse project at: http://github.com/diegobenincasa/
XSDMiner

24

http://github.com/diegobenincasa/XSDMiner
http://github.com/diegobenincasa/XSDMiner

3.3 Implementation

To evaluate the pace of changes in XML documents used in web services contracts,
this work uses the simple metrics defined in Section 3.2. Also, as said in the previous
section, a Java package named XSDMiner was written to perform the study and
retrieve metric data. The considered XSD containers at this study are counted
for each XSD file found in projects repositories and compared between consecutive
revisions (or commits) to check if there are evidences of a change.

XSDMiner implements the class XSDParser, which parses XSD files and retrieves
the counting of container types listed before. It uses Java DOM to parse input files
and has different methods for retrieving each container type counting. MetricMiner
then runs over selected GitHub repositories (downloaded and available locally) and
performs user-defined analysis (or “studies”) at each revision. MetricMiner Study
class was written so that it can use XSDParser to parse each XSD file in the
repository, running its code for every commit. As MetricMiner outputs a CSV file,
the Study class was written in such a way that information listed in Section 3.2 can
be gathered using this file type. Listing 3.1 illustrates the implemented Study class
to be used as a processor by MetricMiner (imports hidden from the code snippet). It
shows a working example for a single repository (in this case, the one named “xwiki-
platform”) to extract metrics as required by the class MineXSD for every commit and
using four threads at a time.

Listing 3.1 - XSDMiner code snippet: the Study class implementation� �
1 //...
2 public class MyStudy implements Study {
3

4 String projectDir = "/home/diego/github/";
5 String output = "/home/diego/Desktop/mm_output/" + project + ".csv";
6

7 public static void main(String[] args) {
8 new MetricMiner2().start(new MyStudy());
9 }

10 @Override
11 public void execute() {
12 new RepositoryMining()
13 .in(GitRepository.allProjectsIn(projectDir))
14 .through(Commits.all())
15 .withThreads(4)
16 .process(new MineXSD(), new CSVFile(output))
17 .mine();
18 }
19 }� �

25

3.4 Study execution

Applying the criteria mentioned in Section 3.2 and using GitHub’s native search
mechanism, six projects were selected to be analyzed, as shown in Table 3.1.

Table 3.1 - Selected projects to perform the study

Project Description Address

Datacite/Schema DataCite Metadata Schema https://github.com/datacite/schema

OpenNMS
OpenNMS enterprise grade
network management
application platform

https://github.com/OpenNMS/opennms

SOCIETIES-Platform SOCIETIES platform software https://github.com/societies/SOCIETIES-Platform

spring-ws Spring Web Services https://github.com/spring-projects/spring-ws

XeroAPI-Schemas XSD Schemas for api.xero.com https://github.com/XeroAPI/XeroAPI-Schemas

xwiki-Platform The XWiki platform https://github.com/xwiki/xwiki-platform

After the projects were selected, their repositories were downloaded locally, and
MetricMiner with XSDMiner was executed over each one of them. In this preliminary
study, MetricMiner ran several times, each time for a single project, and individual
CSV files were generated per project. To ease the analysis over those files, they were
imported to a PostgreSQL database and a SQL script was written2 to output metric
data separated by XSD container type.

3.5 Results and analysis

Selected projects have different XSD file quantities, and some projects have a large
set of files of that type. Thus, it is difficult to show complete collected data in
a summarized manner. Table 3.2 presents raw metric information that could be
gathered.

The chart presented in Figure 3.1 shows the percentage of commits where
modifications were found, classified according to each container type (blue:
xs:element; orange: xs:attribute; yellow: xs:complexType). On the other hand,
chart illustrated in Figure 3.2 shows the ratio between the total number of
modifications (separated by container type) and the number of commits where
those modifications occurred (similar label as before), also classified according to
each container type, which represents a mean value of container quantity changes

2The script is also available at XSDMiner repository at GitHub.

26

per commit with modifications.

Table 3.2 - Raw metric data extracted from projects

Datacite/Schema OpenNMS SOCIETIES-Platform spring-ws XeroAPI-Schemas xwiki-Platform

XSD files 44 100 78 53 35 4

Total
modifications in
elements

89 257 268 114 130 33

Total
modifications in
attributes

97 347 168 109 96 11

Total
modifications in
complex types

87 240 204 115 78 17

Total commits 200 43614 9761 4286 137 49187

Commits
with XSD
modifications

34 722 597 60 94 50

Commits
with elements
modifications

11 192 231 40 64 35

Commits with
attributes
modifications

19 339 93 36 31 9

Commits with
complex types
modifications

10 169 141 38 33 15

Commits
with no
modifications

166 42892 9164 4226 43 49137

Figure 3.1 - Percentage of commits where changes in each container type were found

27

Figure 3.2 - Ratio between total number of each container type modification and the
number of commits where those changes occurred

Figure 3.1 illustrates that there are no visible patterns regarding the percentage of
commits with modifications. Project spring-ws, the only project in this study that
deals with web services, shows similar numbers for all container types, very much
alike other three projects, but distinct from the other two. Four of the six selected
projects have greater percentages in element containers, and they show a similar
tendency: element containers have greater percentages, followed by complexType
and attribute containers (in this order). The other two projects also seem to
share a common behavior: greater percentages for attribute containers, followed
by element and complexType containers (in this order). One project stands out
from the behavior of the others: XeroAPI-Schemas changes the number of every
container type in a frequency much larger than other projects, particularly the
element container. Not with the same highlight, but also with a much different
behavior in respect to the other projects, is Datacite/Schema, which shows a larger
number of commits with modifications in attribute containers in comparison to
other types.

The chart illustrated in Figure 3.2 shows that, visually, no pattern can be inferred,
in a similar conclusion as the one found by inspecting Figure 3.1. However, the
calculated ratios seem to approximate numbers for the three considered container
types when analyzing projects individually. Nevertheless, there is not even a
“container type ranking” pattern as in Figure 3.1, with induces the need to deepen
the study and consider more variables and metrics in the analysis to reduce the

28

seemingly heterogeneous behaviour of ratios.

No matter how often modifications occur inside XSD documents, they reveal
another common characteristic: increase or decrease of containers do not prevail
one over another. This establish a new issue to address later in this dissertation,
as those two metrics can not be used to sustain an argument for tendencies
on XSD documents modifications. Examples of such heterogeneity are shown in
Figure 3.3, Figure 3.4 and Figure 3.5. Blue lines represent element containers;
red lines represent attribute containers; and yellow lines represent complexType
containers. Left-to-right reading of charts goes from older to recent commits.

Figure 3.3 - Quantities of containers through XSD modification commits for project
OpenNMS, file users.xsd

29

Figure 3.4 - Quantities of containers through XSD modification
commits for project SOCIETIES-Platform, file
org.societies.api.internal.schema.privacytrust.privacyprotection
.model.privacypolicy.xsd

Figure 3.5 - Quantities of containers through XSD modification commits for project
spring-ws, file schema.xsd

30

3.5.1 Answering the research questions

(PRQ1) – What is the frequency of changes in the number of each
XSD basic container type (element, attribute and complexType)? – The
occurrence frequency of changes varies a lot per project and per XSD file. While
some projects have more modifications in “element” containers, other ones show this
behavior in “complex types”. Besides that, different files have distinct modification
behaviors, which hampers the task to establish a fixed changing rate for each
modification type. Nevertheless, apparently elements modifications are the most
frequent and happens several times during projects life cycle.

(PRQ2) – Do distinct projects have similar changing frequencies for
each XSD basic container type? – Selected projects do not fully share a
common behavior regarding changing frequencies, but two groups can be defined:
one consisting of four projects in which frequencies of changes follow the sequence
attribute, complexType and element (sorted ascending); and another consisting
of two projects in which frequencies of changes follow the sequence complexType,
element and attribute (sorted ascending). The number of projects selected do not
enable the establishment of a unique answer, and an increase in this number might
lead to one.

(PRQ3) – What is the number of XSD document versions where no
changes in the number of XSD basic container types are found? – Three
of the six selected projects present changings in some container type quantities in
a frequency not greater than 1% of total commits. Other two projects shows a bit
higher values, but do not reach 10% of total commits, and one project presents
results in complete disparity with the others. This reveals that projects that defines
XSD documents do not alter these files in a regular basis. On the other hand, they
perform many modifications during their life cycles (as seen on Table 3.2), which
sustains the need to deepen the study to understand how and where the changes in
XSD files occur, as well as to analyze the impact on the contract semantics.

3.6 Threats to validity

The number of projects selected by the criteria specified at Section 3.2 is small when
compared to the many existing open-source projects that deals with web services.
The major problem with the selection lies on GitHub search engine: it does not
provide an inside-repository search tool that could retrieve projects with specific files
in it – like any XSD file (*.xsd filter, grouped by project), for example. This makes

31

the search and selection of projects even more difficult. To improve the quality of
the analysis undertaken in this study, it should be continuously executed over other
projects, and different ways to search for relevant ones should be considered.

Another fact that should be taken into account is that some modifications might
become masked by other ones. As an example, in a certain revision a container might
have been created, but this can cover up the removal of another container of the
same type, as the current study is mainly based on the number of containers found
at each revision of XSD documents. This problem needs to be addressed, analyzing
each modification individually.

Projects have different life cycles, and so have distinct revision quantities and,
ultimately, diverse modification rates. This fact is not addressed in the present study,
as it only considers the absolute values of the extracted metrics and its percentage
portion in total modification count. It does not relate those numbers with the project
life cycle, which could hide knowledge not retrieved with this work.

3.7 Conclusions

This preliminary study aimed to check if changes occur in XSD schemas, as well as to
understand how these modifications happen among consecutive documents revisions.
Research found that the frequency of changes are not homogeneous for the projects
analyzed, and the types of modifications also do not share a common changing
behavior. Thus, it was unable to establish a changing pattern for all six projects.
Also, the number of projects studied prevents the generalization of the results for
any project that defines XSD contracts. Research questions were answered with no
final statements, as results per project and per modification type are not entirely
similar.

On the other hand, a relevant information obtained was that contracts do experience
many modifications, which is natural but can impact on consumers of data that relies
on these schemas. Thus, further analysis with a larger amount of projects need to be
undertaken to unveil their particularities, addressing each modification individually
and verifying what was changed at each commit. This was left to be done in the
sequence of this dissertation. It must be stated that this next research needs to be
done with web service projects only.

32

4 RESEARCH DESIGN AND EXECUTION

After the preliminary study undertaken in Chapter 3, next step is to perform a wider
study to investigate contract changes deeper. It involves dealing with modifications
individually for each XSD schema inside or outside WSDL documents and for each
project. This chapter presents the design and execution of a study that aims to
analyze those modifications and identify common characteristics among projects
based on changing tendency of their WSDL contracts.

A caveat to define patterns or tendencies in the preliminary study was the number of
projects analyzed, which brings difficulties to generalize the results obtained. Thus,
in this next step, the amount of projects was the first point to consider before any
further implementation and analysis. Nevertheless, it also includes more metrics to
address changes not dealt before: the preliminary study only took account of each tag
type through revisions, and now changes are analyzed individually by modification
type.

The previous study concluded that changes occur frequently in XSD documents,
which might cause semantic changing and impact on provided data interpretation by
service consumers. The frequency of changes, though, needs to be more investigated.
Moreover, the existence of service-specific contracts defined as WSDL documents
in the repository has to be the main requirement to select projects, and those files
should be analyzed alongside with dedicated XSD documents (if they also exist). Due
to this, next steps aim to address those issues and answer some research questions
(RQ).

4.1 Research questions

To achieve the goal of the present study, the follwing RQs are defined:

• RQ1 – What is the occurrence rate of each XSD modification type?

• RQ2 – With which pace XSD modifications include or exclude
information?

• RQ3 – How is the distribution of modifications among commits?

Answers to these RQ’s should give relevant knowledge to the understanding of the
behavior of contracts modifications.

33

4.2 Study methodology

Although the number of selected projects led to some valuable inferences on the
study undertaken at Chapter 3, it is not adequate to establish reliable conclusions
that can be generalized. As so, new approaches to select appropriate projects must
be considered.

One of the greatest difficulties on selecting a relevant number of projects relies on
the fact that GitHub search tool does not provide means to search for projects with
the desired characteristics for this dissertation (same as listed at Section 3.2). Thus,
at the time of the preliminary study, only few projects were chosen.

Google has mirrored GitHub database to their own big data query solution, called
Google BigQuery 1, which is a more suitable tool to search for projects with the
desired characteristics. Being, according to Google, a “fully managed, petabyte scale,
low cost analytics data warehouse”, the benefits regarding GitHub public dataset
at Google BigQuery include: a real database structure for every project, every file
and all their revisions, with many attributes stored as table columns; an easy-to-use
query interface, that queries the database with a SQL-like syntax and outputs data
that can be exported to different file formats (CSV, JSON, etc.); a fast and reliable
mechanism to rapidly retrieve queried data. By using Google BigQuery, a greater
amount of projects were selected to create a representative sample for the results to
be obtained in this research.

Having projects with WSDL documents in their repository is not enough, as they
might have a few number of revisions for those files, which is not adequate for a
representative analysis. After selected projects being checked out locally, they were
filtered according to a minimum number of desired revisions for at least one WSDL
file. For this research, the minimum number of revisions was defined as five.

During the selection phase, some WSDL files were found with syntax errors, which
could muddle the analysis algorithm and break the software execution. To prevent
this problem, all documents were validated before starting the analysis and, in case
of problems, the problematic files were removed from the processing and no revisions
of them were considered. If these procedures made projects not have at least one
WSDL file with five or more revisions, those were entirely removed from the analysis.

After having a projects foundation to work with, the metrics considered at

1Available at: https://cloud.google.com/bigquery/

34

https://cloud.google.com/bigquery/

Section 3.2 should be expanded. From that moment on, those metrics were defined
as follows:

• Quantity of xs:element, xs:attribute, xs:complexType and xs:import
tags;

• Increase and decrease of each tag listed above after each commit;

• Quantity of tags refactored (name changed), except for xs:complexType;

• Quantity of tags relocated inside schema, for xs:element and
xs:attribute;

• Quantity of projects with at least one WSDL document with more than
five revisions;

The metrics defined before should be extracted from each WSDL/XSD file revision,
but only from files that meet the requirement of having at least five revisions. Once
extracted, it is desired that they can lead to answering the research questions listed
in Section 4.1. From the list of metrics listed before, it can be seen that the first one
was already implemented and used for the preliminary study.

To gather the metrics defined above, a new MetricMiner Study class was written,
in order to extract the XSD schema from within the WSDL documents for further
calculations. To ease these calculations and the analysis to be proceeded after that,
every schema extracted by MetricMiner over the entire range of commits were
imported to a PostgreSQL database into a table with some information, namely:

• Schema count (a single WSDL document can have multiple defined XSD
schemas);

• Name of the WSDL (or XSD) file associated with the schema;

• Name of the corresponding project;

• Commit hash code of the file;

• Timestamp of the commit;

• The schema code itself;

35

• A flag “a” (add) or “r” (remove) to identify a commit where the file appears
in or is removed from the repository;

Once the database was populated with all the schemas from the included projects,
another Java code was written to compare each pair of consecutive schema revisions,
extracting the defined metrics. The result were then inserted into another database
table in order to be later exported and analyzed.

Final steps were related to reviewing the analysis and trying to answer the RQ’s
already defined. Pie charts, histograms and statistical data over the extracted
metrics were generated trying to find common behaviours of the modifications that
could answer these questions.

4.3 Projects selection

As said in Section 4.2, Google BigQuery database were used for projects selection,
as it has more relevant tools to filter GitHub projects according to this research
needs. By using its interface for public dataset github_repos2, the following query
was executed:

Listing 4.1 - Google BigQuery query string to select projects with WSDL documents in
their repository� �

1 SELECT commit, committer.date AS date, repo_name, difference.new_path AS file
2 FROM FLATTEN([bigquery-public-data:github_repos.commits], difference)
3 WHERE LOWER(RIGHT(difference.new_path, 5)) = ".wsdl"
4 AND difference.old_sha1 <> difference.new_sha1� �
The above query is looking for commits from any repository where the involved file
ends with “.wsdl” extension. It must return the commit hash code, the commit
date, the repository name and the file name and relative path.

The above query returned3 a list of files with their commit hash and date, as well
as their repository names. This list was then exported as a CSV file and imported
to a local PostgreSQL database. Then, a simple SQL query listed distinct project
repository names in it, leading to a count of 210 GitHub projects that have at least
one WSDL document in their repository. The minimum revisions quantity threshold
filtering was done in a next step, after checking out every project listed.

During the checkout of projects, it was noticed that Google BigQuery also returns
2Available at: https://goo.gl/o9Aeuz.
3Last queried on September 13th, 2016.

36

https://goo.gl/o9Aeuz

all forks for the same project. This can be seen by looking at the repository names,
where the first part (before “/” character) is the name of the fork maintainer and
the second part (after “/” character) is the actual name of the project (for example,
a repository named “wso2/carbon-data” is related to project “carbon-data”, under
responsibility of GitHub user “wso2”). Due to that, another filter was then defined:
the main project should be considered without any forks. This ensures that only one
edition of each project is analyzed, preventing multiple interpretations of the final
results. After applying this filter, using a query to split the text after “/” in the
repository name and listing distinct resulting texts, 187 projects remained at the
list. It must be stated that when a project was spotted having forks, the discovery of
the main one was done manually and its repository address was kept in a separate
list for checkout.

With a primary list of projects established, next step was to check which files have
at least five revisions in their repository, verifying how many projects still obey the
selection criteria. This was done by querying the projects database table with a
statement to filter tuples with more than five occurrences for the same file and list
their project names. This led to a final count of 159 projects.

A limitation of Google BigQuery is that it does not include information about the
branch of the files hosted at their servers. Thus, when checking out projects, it was
defined that only the branch master should be considered.

4.4 Metrics and analysis implementation

To proceed with the analysis, new Java classes needs to be implemented, in order to
extract useful data from WSDL and XSD documents and to compare consecutive
revisions. Thus, two classes were written for those tasks: XSDMiner24, to extract
XSD schemas from within WSDL documents (when it is the case) and commit
them to a PostgreSQL database table, and SchemaCompare5, to check each pair of
consecutive revisions of schemas and verify the modifications, committing them to
another database table.

XSDMiner2, like XSDMiner, is a extension of the Study class from MetricMiner. It
iterates over each commit, checking for the existence of a WSDL/XSD document at
it and, in case of existence, extracts only the XSD schemas (via an auxiliary class
XSDExtractor) and commits to a database table along with some data, as listed in

4Available at: http://www.github.com/diegobenincasa/XSDMiner2.
5Available at: http://www.github.com/diegobenincasa/SchemaCompare.

37

http://www.github.com/diegobenincasa/XSDMiner2
http://www.github.com/diegobenincasa/SchemaCompare

Section 4.2. A code snippet from XSDMiner2 is presented in Listing 4.2.

Listing 4.2 - XSDMiner2 code snippet, with some parts excluded� �
1 for(Modification m : commit.getModifications())
2 {
3 //...
4 String fileExtension = fName.substring(fName.lastIndexOf(".")+1);
5

6 boolean isWSDL = fileExtension.equals("wsdl");
7 boolean isXSD = fileExtension.equals("xsd");
8

9 //...
10 String[] schemas;
11 if(fileExtension.equals("wsdl"))
12 {
13 XSDExtractor.wsdlToXSD(input, outputXSD);
14 schemas = XSDExtractor.splitXSD(outputXSD.toString());
15 }
16 else
17 {
18 outputXSD.write(IOUtils.toString(input).getBytes());
19 schemas = new String[1];
20 schemas[0] = outputXSD.toString();
21 }
22

23 //...
24 }� �
SchemaCompare, on the other hand, do not use MetricMiner anymore. It just iterates
over each schema stored at the database and compares them consecutively, from
the oldest to the newest revision. Using the XMLUnit library 6, which is a tool
that compares two XML documents and lists their divergences, it collects each
difference found between revisions and stores the involved XML containers (with
metadata) into Java hash maps, in order to analyze if the change type is one of
these: container refactored to a different name; addition or removal of container;
container relocation inside schema. It must be stated that this study deals with
four types of XML containers: element, attribute, complexType and import tags.
Class implementation is shown as a code snippet at Listing 4.3.

Listing 4.3 - SchemaCompare code snippet, with some parts excluded� �
1 //...
2 XMLUnitCompare comp = new XMLUnitCompare();
3 //...
4 for(String p : projects)
5 {
6 //...

6Available at: http://www.xmlunit.org/.

38

http://www.xmlunit.org/

7 for(String fn : files.keySet())
8 {
9 //...

10 for(int i = 1; i <= nSchemas; i++)
11 {
12 //...
13 while(rs.next())
14 {
15 if(counter > 0)
16 {
17 //...
18 if(baseSchema.isEmpty() && !testSchema.isEmpty())
19 comp.init(testSchema, 2);
20 else if(!baseSchema.isEmpty() && testSchema.isEmpty())
21 comp.init(baseSchema, 1);
22 else if(baseSchema.isEmpty() && testSchema.isEmpty())
23 comp.init(baseSchema, 3);
24 else
25 comp.init(baseSchema, testSchema);
26 //...
27 }
28 //...
29 }
30 }
31 }
32 //...
33 }� �
SchemaCompare class compares two consecutive file revisions and lists their
differences regarding the tags defined to be studied. The data it generates is
committed to a PostgreSQL database table to ease the analysis and the presentation
of useful knowledge. This table has the following structure:

• Commit timestamp of the test schema (the one in the newest file revision
in the comparison);

• The project name of the compared files;

• Commit hash codes of the base schema (the one in the oldest file revision
in the comparison) and of the test schema;

• The name of the files where the compared schemas belong;

• The schema identifier (WSDL documents can have more than one schema
defined inside them);

• Indicators of modification occurrence as numbers (0 for no changes between
revisions, 1 for any change), one column for each modification type (as
listed in Section 4.2);

39

• Quantities of each tag type in both schema revisions, one column per tag,
and each tag divided into “before” (base schema) and “after” (test schema)
quantities.

Refactoring, in the scope of this study, is defined as a tag name being modified. An
analysis of tags between two file revisions, in order to infer that two are the same
but with distinct names and properties, is complex and demands a deeper study not
addressed here. So, in this research, two tags are considered the same when their
names match over 90% by normalized Levenshtein distance. This was implemented
in SchemaCompare class using the external Java library java-string-similarity7.

Each difference found at the comparisons made by SchemaCompare class was also
stored into the database. Further analysis was done by writing SQL scripts suited
to generate useful information that can lead to answering the research questions
listed at Section 4.1. Those scripts were explained during data extraction at the
next section.

4.5 Data extraction execution

After classes being implemented, they were executed to gather data to be analyzed.
Before the analysis, however, extracted schemas were validated in terms of
formatting to prevent misinterpretation due to code malfunction. After this, a series
of graphical and statistical analysis were undertaken to try to answer the research
questions. All those steps are detailed in this section.

4.5.1 Data validation

As said in Section 2.2, XSD schemas inside WSDL documents should be inside
<types></types> tags. As the name suggests, it describes the data types used for
service messages. During the schema extraction using XSDMiner2, it was noticed
that some WSDL files do not have those types definitions, not even referenced from
an external XSD document, and so could not be used for any kind of analysis.
This is probably due to the need of the involved projects to include “test files”,
which do not really represent a real service contract and are used just for project
compilation and testing. Those files, then, were excluded from the study, to prevent
bad interpretation of the results.

SchemaCompare class has an useful and important feature: it validates a XSD schema
7Available, with documentation, at: https://github.com/tdebatty/

java-string-similarity.

40

https://github.com/tdebatty/java-string-similarity
https://github.com/tdebatty/java-string-similarity

according to the XSD standard. The DiffBuilder class of XMLUnit, which is used
by SchemaCompare and is the main responsible to gather all differences between two
XML documents, crashes when any of the involved files is malformed. During the
processing of SchemaCompare over selected projects, some crashes occurred and, to
prevent bad inferences about the projects that led to failures, those were excluded
from the analysis.

A single WSDL document can define multiple schemas inside it. This possibility
was addressed in XSDMiner2, and it stores the schemas with a “schema identifier”
(integer) in the database. This, however, brings a problem: a single WSDL file can
have more than five revisions, but inner schemas can have less than that individually.
This is not an issue, as SchemaCompare considers the total number of revisions of
the file itself.

A summary of XSDMiner2 and SchemaCompare operations for projects validation
is presented in Table 4.1 and in Table 4.2. As a consequence of the problems
stated before, twenty projects were excluded from the projects listing obtained at
Section 4.3, leading to a final number of 139 projects. All filterings and the final
count of projects are summarized in Figure 4.1.

Table 4.1 - XSDMiner2 and SchemaCompare filtering summary for all projects

File type File status Quantity Percentage

WSDL
Valid 1800 97.72%
Invalid 40 2.17%

Excluded 2 0.11%
Total 1842

XSD
Valid 3617 99.34%
Invalid 24 0.66%

Excluded 0 0.00%
Total 3641

Total files revisions 32787

The final count of 139 projects to be analyzed were considered a representative
sample, as it theoretically includes 66.19% of all GitHub projects that defines WSDL
contracts and XSD schemas8.

8As for September 13th, 2016.

41

Table 4.2 - Step-by-step projects filtering after Google BigQuery selection

Step Description Quantity Percentage

1 First selection total 210 100%

2 Excluded forks 23 10.95 %
3 Projects with less than 5 revisions 28 13.33%
4 Excluded projects 20 9.52%

5 Final list to be analyzed 139 66.19%

Figure 4.1 - Characterization of projects selected at Google BigQuery

4.5.2 Projects profiles

Not all WSDL/XSD documents found have a minimum of five revisions, and the
number of files, per project, that meets this requirement differs among projects. This
is made clear with the graph in Figure 4.2. It shows the percentage of projects with
less than a specific amount of WSDL/XSD documents with at least five revisions. It
is noticed that a huge amount of projects (97.2%, or 139 of 143 projects – excluded
projects were taken into account) have less than 20 contracts with more than five
revisions, which can present a tendency of web service projects to not modify too
much contracts in general. Data for this graph is listed in Table 4.3, which shows
that one single project has 387 documents that meet the five revisions requirement
(it is not represented in the graph), which is completely out of the general tendency.

42

Figure 4.2 - Percentage of projects with respect to the amount of WSDL/XSD contracts
with more than five revisions

Table 4.3 - Percentage of projects with respect to the amount of WSDL/XSD contracts
with more than five revisions: data table

Files Projects Percentage Accum. Percentage Files Projects Percentage Accum. Percentage

1 46 32.17% 32.17% 12 4 2.80% 92.31%

2 27 18.88% 51.05% 13 1 0.70% 93.01%

3 18 12.59% 63.64% 14 2 1.40% 94.41%

4 3 2.10% 65.73% 15 1 0.70% 95.10%

5 15 10.49% 76.22% 18 2 1.40% 96.50%

6 2 1.40% 77.62% 20 1 0.70% 97.20%

7 5 3.50% 81.12% 45 1 0.70% 97.90%

8 6 4.20% 85.31% 46 1 0.70% 98.60%

9 1 0.70% 86.01% 84 1 0.70% 99.30%

10 3 2.10% 88.11% 387 1 0.70% 100.00%

11 2 1.40% 89.51%

Some projects have all their contracts with more than five revisions, others have
no documents satisfying this criteria, and many have variable numbers for each
situation. As can be seen in Figure 4.3, projects usually have more files with less
than five revisions. It was verified that only 24.5% of analyzed projects have most

43

documents with five or more revisions. This shows that, usually, modifications are
less frequent per contract and more distributed among files.

The inference made before can be reinforced by Figure 4.4. For each project, it
was calculated the percentage of WSDL/XSD documents that have more than five
revisions in respect to the total amount of those documents. Data from all projects
were, then, classified in four percentage quartiles, and it was verified that almost
50% of projects have less than 25% of their contracts satisfying the revision quantity
threshold.

Figure 4.3 - Contracts with more than five revisions with respect to the ones that do not
satisfy this criteria

44

Figure 4.4 - Quantity of projects by 5+ revisions percentage quartiles

4.5.3 Contracts changes analysis

The implemented XSDMiner2 class outputs several relevant data, which are then
imported to the PostgreSQL database to ease the analysis. Such data are,
basically, the amount of each XML schema tags considered in this study, as
listed in Section 4.2. With those amounts for each file and their revisions, class
SchemaCompare is executed to update the database with the additions, removals,
relocations and refactorings of tags. This is a deeper analysis in comparison to what
was made in Chapter 3, because while the preliminary study only considered the
amounts of each tag per file revision, the present one also verifies each change that
the documents experienced among commits. This unmasks changes not detected by
simple tag quantities verification – for example, when a number of a particular type
of tag is removed at the same time an equal amount of it is added. A summary of
these types of changes is presented in Table 4.4.

Table 4.4 - Analyzed changes

Modification type Description

Addition Tag appears where it was not present in previous revision

Removal Tag disappears where it was present in previous revision

Relocation Tag disappears where it was present in previous revision and appears
at a different place

Refactoring Tag changes its “name” property by less than 10% (normalized
Levenshtein distance)

Detection of changes listed in Table 4.4 were made using XMLUnit library. Its

45

DiffBuilder class gets two XML sources as input, and outputs all their differences
as a list containing the compared nodes from each source and the difference itself.
SchemaCompare class, then, uses this list to grab the types of the compared nodes and
their name property to check what type of modification occurred. In case of any of the
types listed in Table 4.4 were detected, the counting of it was computed. Counting
modifications separately by change type prevents an addition-removal masking. A
code snippet from DiffBuilder class is presented in Listing 4.4.

Listing 4.4 - DiffBuilder class from XMLUnit code snippet� �
1 //...
2 public void listAddAndRemove()
3 {
4 Diff myDiff = DiffBuilder.compare(Input.fromString(baseSchema))
5 .withTest(Input.fromString(testSchema))
6 .withNodeMatcher(new DefaultNodeMatcher(ElementSelectors.byNameAndAllAttributes))
7 .ignoreComments()
8 .ignoreWhitespace()
9 .checkForSimilar()

10 .build();
11

12 Iterable<Difference> diffs = myDiff.getDifferences();
13 NormalizedLevenshtein nl = new NormalizedLevenshtein();
14 Map<String, String> addedTags = new HashMap<String, String>();
15 Map<String, String> removedTags = new HashMap<String, String>();
16 Map<String, String> refactoredTags = new HashMap<String, String>();
17 Map<String, String> relocatedTags = new HashMap<String, String>();
18

19 if(myDiff.hasDifferences())
20 {
21 for (Difference difference : diffs)
22 {
23 //...� �
A summary of data after this update is presented in Figure 4.5 and Table 4.5, as well
as in Figure 4.6 (in absolute numbers). The charts illustrate that the modifications
are most related to addition and removal of tags, and in a much higher amount
for xs:element tags. It also shows that xs:import tags are too less modified, and
that xs:element and xs:complexTypes experiences the greater amounts of changes
found. Figure 4.5 also presents that the proportions of each modification type are
similar between xs:element and xs:attribute tags. Details for each project are
listed in Appendix A.

Checking the charts, it is verified that xs:complexType tags do not experience
refactorings. This is due to the fact that xs:complexType do not usually have the
“name” property that was analyzed for name changing. Due to the same reason, it
was not possible, by the techniques defined for this research, to verify if tags of this

46

Table 4.5 - SchemaCompare output summary

Modification type xs:element xs:attribute xs:complexType xs:import

Addition 10764 327 4254 9

Removal 8125 340 1957 0

Relocation 4407 133 - -

Refactoring 533 15 0 -

Figure 4.5 - SchemaCompare output summary

Figure 4.6 - SchemaCompare output summary (absolute numbers)

47

type experienced relocations inside schemas.

4.5.4 XSDMiner2 and SchemaCompare data classification

Not all contracts in selected projects repositories have more than five revisions. In
fact, a much greater amount of them do not satisfy this condition. This can be
verified in Figure 4.7, where it is shown that around 4400 documents have four or
less revisions. Considering that projects have a total of 5483 WSDL/XSD contracts,
this is significative: a huge amount of contracts are not modified frequently.

Figure 4.7 - Accumulated amount of files in respect to the quantity of revisions

48

5 RESEARCH RESULTS

Data outputted from XSDMiner2 and SchemaCompare were analyzed in order to
answer the research questions listed in Section 4.1. So, each of the following
subsections deals with one RQ.

5.1 RQ1 – What is the occurrence rate of each XSD modification type?

While some revisions change the metrics defined for this research, many of them do
not. As so, the percentage of revisions with each modification type according to the
total amount of revisions (for projects altogether) was calculated. To answer this
RQ, these numbers were put together in the chart shown in Figure 5.1, obtained by
querying the database table where SchemaCompare class stores its output.

Figure 5.1 - Percentage of revisions with considered modifications

It is made clear by chart in Figure 5.1 that xs:element tags experience much more
modifications than the others. Moreover, the quantity of revisions with considered
changes (in percentage), analyzed per modification types, do not exceed 14% of the
total amount of files revisions. Tag xs:complexType do not experience refactoring
(as defined for this research), as it does not have a property “name” (which is
analyzed for refactoring), and xs:import tags are almost never changed.

49

Chart bars are not independent: different types of modifications often occur at the
same commit. Even if they were, the sum of the percentages is not 100%, which
indicates that there are other types modifications occurring with contracts and
different from the ones analyzed in the present research. In fact, SchemaCompare
class compared 10814 different commits from every project, and 6973 of them do
not deal with any considered modification type. In relative numbers, 64.48% of
commits are related to other changes not addressed here.

5.2 RQ2 – With which pace XSD modifications include or exclude
information?

Contracts revisions bringing new information or lacking data when compared to its
previous version are common. In terms of XML tags, it is related to the addition
or removal of each tag type considered. When such modification occurs, a solution
can be to include a “translation middleware” between the client and the service in
order to make the necessary transformations among messages elements from different
contract revisions. Even doing so, this might not fulfill the requirements of both
nodes, imposing the need to adapt the involved systems to the new contract version.
Thus, these changes have great relevance in web services communications.

Adjust messages to respect distinct contract revisions is possible using
transformations. When a tag is removed from the contract (or not already present)
and it is part of service request messages, conversion is easier: if the consumer sends
requests for data not delivered anymore (or not already defined to be delivered), the
middleware can filter them out, forward this adjusted request, receive the reply
message and adjust it to deliver with default or null values for client expected
informations. For added tags used in reply messages, it can just exclude the
information from the response and deliver it without these new data. In case that
requests and/or replies are just restructured into different new tags, the middleware
can rearrange them and adapt to the new fields.

Even with all the workarounds mentioned, the transformations do not fulfill every
use case of the service. An example of them is when new information is expected
by the service and middleware can not infer from the request, or when data not
delivered by the service is relevant for the client and should not be null or with a
default value. Thus, adjustments in client and/or server nodes are mandatory and
message conversions are not an alternative anymore. For many cases, it solves the
problem and helps to maintain integration, but is not a sufficient solution.

50

In RQ1 each modification was analyzed and it was found that many of them could
occur at the same commit. To answer RQ2, though, it must be verified the presence
or absence of the modification types that changes exchanged information. To do this,
a query was performed to the database, in order to gather the amount of revisions
with addition or removal of tags and the quantity of revisions where those changes
did not happen. The result is presented in Figure 5.2, which shows that only around
20% of contracts revisions change documents contents.

Figure 5.2 - Contracts revisions distribution according to exchanged information changing

Regarding only the revisions with the modifications of interest to this RQ, it was
calculated the percentage of each modification type, which is illustrated in Figure 5.3.
It is made clear that modifications in xs:element tags represent the largest part
of content changes found, and the xs:import tags the smallest part with almost
no changes. It is also verified that for around 40% of those modifications it might
be possible to apply message transformations to keep client-service integration (not
considering consistency). It must be considered, though, the particular cases already
mentioned, when data not delivered to client is important to it or when service
expects information from the request and the middleware can not infer from the
client message.

51

Figure 5.3 - Distribution of modification types that change WSDL/XSD exchanged
information

5.3 RQ3 – How is the distribution of modifications among commits?

Changes in contracts do not respect a common pace between commits. In order to
verify how is the distribution of modifications, it was calculated the mean value of
quantity of changes per commit for all files, and analyzed the standard deviation to
check concentration of changes. Data from this processing is presented in Appendix B
and should be interpreted as: files from “project” experience an average of “mean”
modifications per commit, with this value varying to “standard deviation” limits.

Checking data from Appendix B, it can be noticed that 11 of the 139 projects
analyzed have no changes of the types considered in this research. Also, 121 of the
139 projects have standard deviation values greater than their mean values, which
is an indicator that there is no consistency on the modifications frequency among
different commits: while some have greater amounts of changes, others have fewer
numbers, sometimes zero. Besides, 7 projects have standard deviations lower than
their mean values but close to it, which can extend the inference of the 121 projects
to them.

Modifications can happen in different files in the same commit, and the number of
files that experience changes at each commit varies. The analysis of this behaviour
was done by calculating the mean value of the amount of contracts modified at each
commit, and the concentration of changes was verified by computing the standard

52

deviation of those numbers. Data from this processing is listed in Appendix C and
should be interpreted as: commits from “project” have modifications distributed in
an average of “mean” files, with this quantity varying to “standard deviation” limits.

Analyzing data in Appendix C shows that 11 projects have standard deviation values
greater than the mean values. On the other hand, 127 of the other 128 projects (the
exception is project dssp-client) have a low average of files being modified at each
commit (the higher amount is less than 7). Thus, this indicates that modifications
are usually well distributed among distinct contracts and not concentrated in few
documents.

Conclusions obtained so far are extended by the graphs in Figure 5.4 and Figure 5.5.
Disregarding the revisions with none of the considered modification types (already
discussed in Section 5.3) and eventual outliers, it shows that 29.81% of commits have
between 1 and 10 modifications, 3.84% between 11 and 25 modifications, and 0.59%
more than 26 modifications. This leads to infer that a short number of commits
have a high concentration of modifications, and that a great amount of revisions is
related to a few number of changes.

Figure 5.4 - Distribution of modification types that change WSDL/XSD semantic

53

Figure 5.5 - Distribution of modification types that change WSDL/XSD semantic –
accumulated

54

6 CONCLUSIONS

This dissertation aims to describe the behaviour of modifications in web services
contracts schemas defined inside or outside WSDL documents and using XSD
format, in order to provide a guidance to the development of web services to reduce
adaptation effort after the natural evolution of contracts. To achieve this goal, a base
of 139 GitHub projects were established to be analyzed, and code implementation
was done to extract metrics and gather knowledge from the numbers obtained.

It was concluded that xs:element tags are the ones that experiences the most
changes during the life cycle of the projects (followed by xs:complexType tags), and
the numbers of those modifications are greater for additions and removals of tags.
The other analyzed tags have less modifications, but they also have greater amounts
of changes for additions and removals. This indicates that, in general, changes in
tags tend to change the semantic of the contracts, by including new information or
excluding data needed before.

From the numbers gathered in this research, it was detected that WSDL/XSD
documents tend to experience a low number of modifications at each revision. This
indicates that changes are not concentrated, and might lead to the interpretation
that major revisions are not a tendency in web services projects. It might present
a point to be addressed by developers, as it can compromise the client-provider
integration by constantly compelling both nodes to readjust their systems to each
contract revision.

Another conclusion was obtained from the amount of contracts modified at each
commit. It was found that a huge amount of commits are related to a small number
of documents. Since a lot of contracts are modified during the life cycle of projects,
it indicates that commits are not always related to the same contracts, and revisions
are not equally distributed among them. This fact might guide developers and
project managers to restructure their development plannings, as it can force the
nodes to continuously readjust different parts of their systems to avoid breaking the
communication.

From all the results gathered, it can be inferred that web services projects, in
general, do not have a well defined contract versioning schedule. This ultimately
impacts on service nodes not being prepared to an upcoming change, demanding
time to reestablish integration. Thus, the present research gives developers a new
knowledge over their development profiles regarding contracts, which should be used

55

by them to adjust their development planning in order to avoid problems on service
consumption.

Results showed that a large percentage of revisions are not related to semantic
changing in contracts. This fact allows the usage of the architecture proposed by
França and Guerra (2017) for those cases. The most frequent modification types can
guide the evolution of a tool like Chrysalis (DUARTE, 2010) which, in conjunction
with the mentioned architecture, uses, for now, one eXtensible Stylesheet Language
for Transformation (XSLT) file per modification. As concluded from the present
research, a large set of changes can occur in a single commit, which reveals that an
optimization towards the reduction on the amount of the necessary XSLT files can
be very important in a real scenario.

Not every aspect of changing in contracts were addressed in this research, which was
verified by the numbers gathered with the proceeded analysis: only 25.52% of every
existing modification was analyzed. This shows that more research can be done to
evaluate other aspects of contracts evolution. Nevertheless, it is expected that the
methodology defined and executed here serve as a guidance for further analysis,
being extended with new techniques, metrics and classes.

6.1 Contributions

This research leaves some useful contributions, as follows:

• The methodology defined and applied can be reused for further analysis.
Other types of XML elements and modifications can be verified with
some adaptations in the implemented code, maintaining the walkthrough
towards the necessary inferences.

• As already said, results obtained are indicative of web services projects not
having a well defined contract versioning schedule. This dissertation brings
new knowledge about this, which should be considered by web services
developers when planning the evolution of the contracts of their projets.

• Analyzed XSD elements provided useful information regarding the
behaviour of web services development. However, the elements and the
types of modifications verified are 25% of every modification that schemas
experience. This research, then, suggests that more analysis can be done
over the evolution of web services contracts and indicates that more new
knowledge about it can still be discovered.

56

• All code implemented here, along with the metrics database, is open-source
and freely available at GitHub. They can be reused and extended for future
related researches.

• The obtained results can be taken into account by web service developers
when planning the system development, to improve integration and reduce
communication breaks when evolving their contracts.

6.2 Future work

As said before, there is still a wide range of modifications in contracts to be analyzed
in order to provide more knowledge to web service development improvement. So,
some research suggestions are given here.

In the present study, four XML elements present in WSDL contracts were analyzed,
and this analysis was done over the amounts of changes. Many other modifications,
though, are not only related to those types of changing: XSD schemas can contain,
for example, restrictions to xs:element tags, which can be inside the node or
referenced as a xs:simpleType external tag. This and other examples of tags remain
not analyzed. Future research should consider them and verify if they have more
undisclosed useful knowledge.

Refactoring, in this study, was considered as being a change in a tag “name”
attribute. However, it is a much wider theory, which basically involves modification
of document definitions and structure without changing its conception. For example,
changing the name of a tag and keeping its definitions is considered a refactoring.
Another type of refactoring is when a restriction is applied to a xs:element tag:
the restriction can be defined inside it or outside (being correctly referenced), and a
modification from one type of definition to another is also considered a refactoring.
Not all variants of refactoring were considered here. Even renaming used a similarity
algorithm to compare names and did not verified the other tag characteristics to
consider a pair to match in two consecutive revisions. Nevertheless, it already found
relevant knowledge. It is expected, then, that a research considering every possibility
of refactoring should bring some more useful information.

The comparison between consecutive revisions used a Java class that tries to
match nodes in two documents, showing the differences found in the process. The
implemented code that uses it has an extra task to find nodes that were just
moved inside schema (which was called here a relocation). It is desirable that

57

comparisons are always made using equivalent nodes, to guarantee that no wrong
matchings occurs. This can be achieved by implementing Java code that creates the
XSD structure as a tree and compares two documents using it, which might help
addressing the refactoring problem.

Analysis were done over WSDL and XSD documents, regarding only the data types
used to exchange messages in a SOA environment. However, WSDL describes other
aspects of the service, like the connection endpoints and the operations provided by
the service. These were not studied. Research over them should be undertaken to
find out the behaviour of every aspect of the service.

Web services projects were selected over the GitHub platform, as MetricMiner only
operates over this type of software repository. However, other repository platforms
are widely used, like Subversion. The amount of projects studied here is large, but
could be greater if other repository types were used. An extension of this research
should be considered, in order to find out if projects in other repository platforms
follow the same behaviour.

58

REFERENCES

ABATE, P.; COSMO, R. D.; GESBERT, L.; Le Fessant, F.; TREINEN, R.;
ZACCHIROLI, S. Mining component repositories for installability issues. In:
Proceedings of the 12th Working Conference on Mining Software
Repositories. Florence, Italy: IEEE, 2015. p. 24–33. Available from: <http:
//www.dicosmo.org/preprints/msr-2015-distcheck.pdf>. 20

ALMEIDA, D. B. F. C.; GUERRA, E. M. Evolution of XSD documents and their
variability during project life cycle: a preliminary study. In: . Computational
Science and Its Applications – ICCSA 2016: 16th International
Conference, Beijing, China, July 4-7, 2016, Proceedings, Part IV. Springer
International Publishing, 2016. p. 392–406. ISBN 978-3-319-42089-9. Available from:
<http://dx.doi.org/10.1007/978-3-319-42089-9_28>. 23

ANICHE, M. F.; SOKOL, F. Z.; GEROSA, M. MetricMiner: supporting researchers
in mining software repositories. IEEE 13th International Working Conference
on Source Code Analysis and Manipulation (SCAM), p. 142–146, 2013. 3,
20, 24

BARBOSA, H. A.; SILVA, L. R. M. A step beyond visualization: how to ingest
Meteosat second generation satellite data and products into McIDAS-V, ILWIS and
TerraMA2. Journal of Hyperspectral Remote Sensing, v. 4, n. 1, p. 01–18,
2014. 7

BENDINI, H. N.; MORAES, W. S.; COSTA, S.; LOPES, E. S.; KÖRTING, T. S.;
FONSECA, L. M. G. Proposta de sistema de monitoramento da Sigatoka-Negra
baseado em variáveis ambientais utilizando o TerraMA2. In: DAVIS JR., C. A.;
FERREIRA, K. R. (Ed.). Proceedings of the XV Brazilian Symposium on
GeoInformatics. Campos do Jordão, Brazil: MCTI/INPE, 2014. p. 168–173. ISSN
2179-4820. 7

BRAY, T.; PAOLI, J.; SPERBERG-MCQUEEN, C. M.; MALER, E.; YERGEAU,
F. Extensible Markup Language (XML). World Wide Web Consortium
Recommendation REC-xml-19980210, v. 16, 1998. 2nd ed. Available from:
<http://www.w3.org/TR/1998/REC-xml-19980210>. 16

CÂMARA, G.; VINHAS, L.; FERREIRA, K. R.; QUEIROZ, G. R. D.; SOUZA,
R. C. M. D.; MONTEIRO, A. M. V.; CARVALHO, M. T. D.; CASANOVA,

59

http://www.dicosmo.org/preprints/msr-2015-distcheck.pdf
http://www.dicosmo.org/preprints/msr-2015-distcheck.pdf
http://dx.doi.org/10.1007/978-3-319-42089-9_28
http://www.w3.org/TR/1998/REC-xml-19980210

M. A.; FREITAS, U. M. D. TerraLib: an open source GIS library for large-scale
environmental and socio-economic applications. In: HALL, G. B.; LEAHY, M. G.
(Ed.). Open source approaches in spatial data handling. Berlin, Germany:
Springer, 2008. p. 247–270. 6

CARVALHO, L. P. S.; NOVAIS, R.; NETO, M. G. de M. VisMinerService: A REST
web service for source mining. In: III Workshop de Visualização, Evolução e
Manutenção de Software (VEM). Belo Horizonte, Brazil: [s.n.], 2015. p. 89–96.
Available from: <http://vem2015.dcc.ufla.br/wp-content/uploads/2015/08/
2015_vem_carvalho_et_al.pdf>. 20

CHRISTEN, M. Conhecendo melhor as capacidades do Enterprise Service
Bus. Microsoft Corporation, 2009. Available from: <https://msdn.microsoft.
com/pt-br/library/dd920288.aspx>. 14

COMITÊ DE PLANEJAMENTO DA INFRAESTRUTURA NACIONAL DE
DADOS ESPACIAIS. Plano de Ação para Implantação da Infraestrutura
Nacional de Dados Espaciais. Rio de Janeiro, Brazil: Comissão Nacional de
Cartografia (CONCAR), 2010. Available from: <http://www.concar.gov.br/pdf/
PlanoDeAcaoINDE.pdf>. 5

CONNER, P.; ROBINSON, S. Service-oriented architecture. Google Patents,
2007. US Patent App. 11/388,624. Available from: <https://www.google.com/
patents/US20070011126>. 11

CREPANI, E.; MEDEIROS, J. Imagens CBERS+, imagens SRTM+, mosaicos
GeoCover e LANDSAT em ambiente SPRING e TerraView: sensoriamento remoto
e geoprocessamento gratuitos aplicados ao desenvolvimento sustentável. In: XII
Simpósio Brasileiro de Sensoriamento Remoto. Goiânia, Brazil: INPE, 2005.
v. 12. 7

DIRETORIA DE SERVIÇO GEOGRÁFICO DO EXÉRCITO. Especificação
Técnica para Estruturação de Dados Geoespaciais Vetoriais (ET-EDGV).
Rio de Janeiro, Brazil: Comssão Nacional de Cartografia (CONCAR), 2010. 6

DUARTE, A. P. Ferramenta para refatoração de documentos XML.
Monograph (Graduation in Computer Engineering) — Instituto Tecnológico de
Aeronáutica, São José dos Campos, São Paulo, Brazil, 2010. 56

FIELDING, R. T. Architectural styles and the design of network-based
software architectures. 180 p. Thesis (PhD in Information and Computer

60

http://vem2015.dcc.ufla.br/wp-content/uploads/2015/08/2015_vem_carvalho_et_al.pdf
http://vem2015.dcc.ufla.br/wp-content/uploads/2015/08/2015_vem_carvalho_et_al.pdf
https://msdn.microsoft.com/pt-br/library/dd920288.aspx
https://msdn.microsoft.com/pt-br/library/dd920288.aspx
http://www.concar.gov.br/pdf/PlanoDeAcaoINDE.pdf
http://www.concar.gov.br/pdf/PlanoDeAcaoINDE.pdf
https://www.google.com/patents/US20070011126
https://www.google.com/patents/US20070011126

Science) — University of California – Irvine, Irvine, California, USA, 2000.
Available from: <http://www.ics.uci.edu/~fielding/pubs/dissertation/
fielding_dissertation.pdf>. 15

FRANÇA, D. S.; ANICHE, M.; GUERRA, E. M. Como o formato de arquivos
XML evolui? um estudo sobre sua relaço com o código-fonte. 3rd Workshop
on Software Visualization, Evolution, and Maintenance (VEM), Belo
Horizonte-MG, Brazil, 2015. 2, 4, 7, 8

FRANÇA, D. S.; GUERRA, E. M. Modelo arquitetural para gerenciamento
de versões de contratos de serviços web. 79 p. Dissertation (M. Sc. in Applied
Computing) — Instituto Nacional de Pesquisas Espaciais (INPE), São José dos
Campos, São Paulo, Brazil, 2017. 56

FRANK, D.; LAM, L.; FONG, L.; FANG, R.; KHANGAONKAR, M. Using an
interface proxy to host versioned web services. In: Proceedings of the 2008 IEEE
International Conference on Services Computing. Honolulu, USA: IEEE,
2008. v. 2, p. 325–332. 4

GALA-PÉREZ, S.; ROBLES, G.; GONZÁLEZ-BARAHONA, J. M.; HERRAIZ,
I. Intensive metrics for the study of the evolution of open source projects: case
studies from Apache Software Foundation projects. In: Proceedings of the 10th
Working Conference on Mining Software Repositories. San Francisco, USA:
[s.n.], 2013. Available from: <http://oa.upm.es/14698/>. 20

GLASS, R. L. The state of the practice of software engineering. IEEE Software,
IEEE Computer Society, Washington, USA, v. 20, n. 6, p. 20 – 21, 2003. 19

HASSAN, A. E. Mining software repositories to assist developers
and support managers. 300 p. Thesis (PhD in Computer Science) —
University of Waterloo, Waterloo, Canada, 2004. Available from: <https:
//uwspace.uwaterloo.ca/bitstream/handle/10012/1017/aeehassa2004.pdf?
sequence=1>. 19

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO
8879:1986: Information Processing – Text and Office Systems – Standard
Generalized Markup Language (SGML). 1986. 16

KAGDI, H.; COLLARD, M. L.; MALETIC, J. I. A survey and taxonomy of
approaches for mining software repositories in the context of software evolution.
Journal of Software Maintenance and Evolution: Research and Practice,

61

http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://oa.upm.es/14698/
https://uwspace.uwaterloo.ca/bitstream/handle/10012/1017/aeehassa2004.pdf?sequence=1
https://uwspace.uwaterloo.ca/bitstream/handle/10012/1017/aeehassa2004.pdf?sequence=1
https://uwspace.uwaterloo.ca/bitstream/handle/10012/1017/aeehassa2004.pdf?sequence=1

John Wiley & Sons, Ltd., v. 19, n. 2, p. 77–131, 2007. ISSN 1532-0618. Available
from: <http://dx.doi.org/10.1002/smr.344>. 19

LEITNER, P.; MICHLMAYR, A.; ROSENBERG, F.; DUSTDAR, S. End-to-
end versioning support for web services. In: Proceedings of the 2008 IEEE
International Conference on Services Computing. Honolulu, USA: IEEE,
2008. v. 1, p. 59–66. 4

LIMA, F. A.; ALMEIDA, L.; BRAGA, F. L.; NERY, C. V. M. Utilização do sistema
de informações geográficas Terraview para delimitação da bacia hidrográfica do
Rio Vieira, Montes Claros–MG. Simpósio Regional de Geoprocessamento e
Sensoriamento Remoto – Geonordeste, VI, 2012. 7

MENGE, F. Enterprise Service Bus. In: Proceedings of the 2007 Free and Open
Source Software Conference. Sankt Augustin, Germany: FrOSCon, 2007. v. 2,
p. 1–6. Available from: <https://programm.froscon.org/2007/attachments/
15-falko_menge_-_enterpise_service_bus.pdf>. 14

OLATUNJI, S. O.; IDREES, S. U.; AL-GHAMDI, Y. S.; AL-GHAMDI, J. S. A.
Mining software repositories – a comparative analysis. International Journal of
Computer Science and Network Security, IJCSNS, Seoul, Korea, v. 10, p. 161
– 174, 2010. N. 8. Available from: <http://paper.ijcsns.org/07_book/201008/
20100826.pdf>. 19

OPEN GEOSPATIAL CONSORTIUM. OGC standards and supporting
documents. 2006. Available from: <http://www.opengeospatial.org/
standards>. 5

PAPAZOGLOU, M. P. The challenges of service evolution. In: BELLAHSÈNE, Z.;
LÉONARD, M. (Ed.). Proceedings of the 20th International Conference
on Advanced Information Systems Engineering (CAiSE). Berlin, Germany:
Springer, 2008. p. 1–15. ISBN 978-3-540-69534-9. Available from: <http://dx.doi.
org/10.1007/978-3-540-69534-9_1>. 8

PATIG, S. Design of SOA services: experiences from industry. In: CORDEIRO, J.;
RANCHORDAS, A.; SHISHKOV, B. (Ed.). Software and Data Technologies.
Springer, 2011, (Communications in Computer and Information Science, v. 50). p.
150–163. ISBN 978-3-642-20115-8. Available from: <http://dx.doi.org/10.1007/
978-3-642-20116-5_12>. 11

PAUTASSO, C.; ZIMMERMANN, O.; LEYMANN, F. RESTful web services vs.
“big” web services: making the right architectural decision. In: Proceedings of the

62

http://dx.doi.org/10.1002/smr.344
https://programm.froscon.org/2007/attachments/15-falko_menge_-_enterpise_service_bus.pdf
https://programm.froscon.org/2007/attachments/15-falko_menge_-_enterpise_service_bus.pdf
http://paper.ijcsns.org/07_book/201008/20100826.pdf
http://paper.ijcsns.org/07_book/201008/20100826.pdf
http://www.opengeospatial.org/standards
http://www.opengeospatial.org/standards
http://dx.doi.org/10.1007/978-3-540-69534-9_1
http://dx.doi.org/10.1007/978-3-540-69534-9_1
http://dx.doi.org/10.1007/978-3-642-20116-5_12
http://dx.doi.org/10.1007/978-3-642-20116-5_12

17th International Conference on World Wide Web. New York, USA: ACM,
2008. (WWW ’08), p. 805–814. ISBN 978-1-60558-085-2. Available from: <http:
//doi.acm.org/10.1145/1367497.1367606>. 12, 15, 18

PETERS, R.; ZAIDMAN, A. Evaluating the lifespan of code smells using software
repository mining. In: Proceedings of the 16th European Conference on
Software Maintenance and Reengineering. Szeged, Hungary: IEEE Computer
Society, 2012. p. 411–416. ISSN 1534-5351. 20

POUTSMA, A.; EVANS, R.; RABBO, T. A. Why contract first? In: Spring
Web Services Reference Documentation. San Francisco, USA: SpringSource,
2007. Available from: <http://docs.spring.io/spring-ws/site/reference/
html/why-contract-first.html>. 18

QIU, D.; LI, B.; SU, Z. An empirical analysis of the co-evolution of schema and
code in database applications. In: Proceedings of the 9th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering. Saint Petersburg,
Russia: Association for Computer Machinery (ACM), 2013. p. 125–135. 8

RAY, B.; NAGAPPAN, M.; BIRD, C.; NAGAPPAN, N.; ZIMMERMANN, T.
The uniqueness of changes: characteristics and applications. In: Proceedings of
the 12th Working Conference on Mining Software Repositories (MSR).
Florence, Italy: IEEE, 2014. Available from: <http://research.microsoft.com/
apps/pubs/default.aspx?id=232407>. 20

ROMANO, D.; PINZGER, M. Analyzing the evolution of web services using fine-
grained changes. In: Proceedings of the 19th International Conference on
Web Services. IEEE, 2012. p. 392–399. Available from: <https://ai2-s2-pdfs.
s3.amazonaws.com/014a/89278437ab0fda58c717ed4ce14a7bddfd11.pdf>. 8

ROSIM, S.; LIMA, S. F. S.; MORAES, E. C.; JARDIM, A. C.; OLIVEIRA, J. R.
de F. Aplicação do TerraHidro para delimitação automática de drenagem e limite
das sub-bacias do rio Miranda. Anais do 4o Simpósio de Geotecnologias no
Pantanal, Bonito, MS. Embrapa Informática Agropecuária/INPE, p. 405–
412, 2012. 7

ROSIM, S.; OLIVEIRA, J. R. de F.; JARDIM, A. C.; CUELLAR, M. Z. Extração
da drenagem da Região Nordeste utilizando o sistema TerraHidro. Simpósio de
Recursos Hídricos do Nordeste, v. 12, 2014. 7

63

http://doi.acm.org/10.1145/1367497.1367606
http://doi.acm.org/10.1145/1367497.1367606
http://docs.spring.io/spring-ws/site/reference/html/why-contract-first.html
http://docs.spring.io/spring-ws/site/reference/html/why-contract-first.html
http://research.microsoft.com/apps/pubs/default.aspx?id=232407
http://research.microsoft.com/apps/pubs/default.aspx?id=232407
https://ai2-s2-pdfs.s3.amazonaws.com/014a/89278437ab0fda58c717ed4ce14a7bddfd11.pdf
https://ai2-s2-pdfs.s3.amazonaws.com/014a/89278437ab0fda58c717ed4ce14a7bddfd11.pdf

ROTEM-GAL-OZ, A. Bridging the impedance mismatch between
business intelligence and service-oriented architecture. Microsoft Developer
Network, 2007. Available from: <https://msdn.microsoft.com/en-us//library/
bb419307.aspx#XSLTsection128121120120>. 12

SAMPAIO, C. SOA e WebServices em Java. Rio de Janeiro, Brazil: Brasport,
2006. 1

SILVA, F. M.; GOMES, C.; CUELLAR, M. Z.; ALMEIDA, S. A. S.; AMORIM,
R. F.; CARVALHO, M. J. M. Comportamento espacial do Índice de Desenvolvimento
Humano no Rio Grande do Norte com uso do programa TerraView (desenvolvido
pelo INPE). In: XIII Simpósio Brasileiro de Sensoriamento Remoto.
Florianópolis, Brazil: INPE, 2007. 7

SPACCO, J.; STRECKER, J.; HOVEMEYER, D.; PUGH, W. Software repository
mining with Marmoset: an automated programming project snapshot and testing
system. In: Proceedings of the 2005 International Workshop on Mining
Software Repositories. New York, USA: ACM, 2005. p. 1–5. ISBN 1-59593-123-
6. Available from: <http://doi.acm.org/10.1145/1082983.1083149>. 20

WEERAWARANA., S.; CHRISTENSEN, E.; CURBERA, F.; MEREDI, G. Web
Services Description Language (WSDL) 1.1. Cambridge, USA, 2001. Note 15,
2001. Available from: <http://www.w3.org/TR/wsdl>. 1, 13, 17

WORLD WIDE WEB CONSORTIUM (W3C). Web Services Glossary: W3C
Working Group Note (February 11th, 2004). Cambridge, USA, 2004. Available from:
<http://www.w3.org/TR/ws-gloss/>. 1

. XML Schema. Cambridge, USA, 2004. Available from: <http://www.w3.
org/XML/Schema/>. 1, 16

. SOAP Version 1.2 Part 1: Messaging framework. Cambridge, USA, 2007.
2nd ed. Available from: <http://www.w3.org/TR/soap12>. 13

YING, A.; MURPHY, G.; NG, R.; CHU-CARROLL, M. Predicting
source code changes by mining change history. IEEE Transactions on
Software Engineering, v. 30, n. 9, p. 574–586, 2004. ISSN 0098-5589.
Available from: <http://trese.cs.utwente.nl/publications/files/
04692004-tse-mine-change.pdf>. 19

64

https://msdn.microsoft.com/en-us//library/bb419307.aspx#XSLTsection128121120120
https://msdn.microsoft.com/en-us//library/bb419307.aspx#XSLTsection128121120120
http://doi.acm.org/10.1145/1082983.1083149
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/ws-gloss/
http://www.w3.org/XML/Schema/
http://www.w3.org/XML/Schema/
http://www.w3.org/TR/soap12
http://trese.cs.utwente.nl/publications/files/04692004-tse-mine-change.pdf
http://trese.cs.utwente.nl/publications/files/04692004-tse-mine-change.pdf

APPENDIX A – TOTAL CONTRACTS REVISIONS WITH EACH
TYPE OF MODIFICATION PER PROJECT

Caption: (A) added xs:element; (B) removed xs:element; (C) relocated
xs:element; (D) refactored xs:element; (E) added xs:attribute; (F) removed
xs:attribute; (G) relocated xs:attribute; (H) refactored xs:attribute; (I)
added xs:complexType; (J) removed xs:complexType; (K) added xs:import.

Project A B C D E F G H I J K

acplugins 24 14 11 3 0 0 0 0 9 2 0

alloc 0 0 0 0 0 0 0 0 0 0 0

amadeus-ws-client 0 0 0 0 0 0 0 0 0 0 0

animated-batman 0 2 2 0 0 0 0 0 2 0 0

apache-ode 12 4 4 2 8 0 0 0 5 1 0

apollo 203 215 146 47 1 0 0 0 178 128 5

battleship 7 2 0 0 0 0 0 0 1 0 0

bearded-archer 9 7 3 0 0 0 0 0 1 1 0

betsy 3 1 1 0 0 0 0 0 0 0 0

bfcp 2 2 1 0 0 0 0 0 0 0 0

BPEL-splitting 3 1 0 1 0 0 0 0 0 0 0

bpmlabs-services 3 4 3 0 0 0 0 0 1 2 0

btc4j-ws 0 1 0 0 0 0 0 0 2 1 0

bypass-stored-value 0 0 0 0 0 0 0 0 0 0 0

c3pr 80 92 58 7 6 6 1 0 41 30 0

caaers 211 205 147 16 14 4 1 0 100 44 0

caarray 28 28 5 8 14 12 2 2 15 13 0

cagrid 380 227 105 29 69 59 20 5 178 50 0

cagrid-core 37 33 10 0 2 5 2 0 12 1 0

cagrid-grid-incubation 51 26 10 2 4 0 0 0 19 1 0

CalendarPortlet 0 0 0 0 0 0 0 0 0 0 0

CallCenter 17 5 5 2 0 0 0 0 7 0 0

65

Project A B C D E F G H I J K

camel 21 9 2 1 20 16 10 2 7 2 0

capture-hpc 0 1 1 0 0 0 0 0 7 5 0

carbon-analytics-common 35 32 19 5 0 0 0 0 10 7 0

carbon-apimgt 17 14 9 7 0 0 0 0 1 1 0

carbon-business-messaging 5 2 1 1 0 0 0 0 4 3 0

carbon-business-process 30 17 7 0 2 0 0 0 6 2 0

carbon-data 4 1 0 0 0 0 0 0 0 0 0

carbon-deployment 11 14 12 0 0 0 0 0 4 1 0

carbon-event-processing 26 25 20 11 0 0 0 0 4 4 0

carbon-identity 74 71 47 7 0 0 0 0 20 13 0

carbon-identity-framework 3 0 0 0 0 0 0 0 0 0 0

carbon-metrics 6 8 5 0 0 0 0 0 1 1 0

carbon-storage-management 7 8 6 1 0 0 0 0 5 4 0

cartoweb3 24 17 6 2 0 0 0 0 9 4 0

centreon-engine 7 13 11 2 0 0 0 0 15 5 0

cerebrum 0 0 0 0 0 0 0 0 0 0 0

channelAdvisorAccess 19 17 11 6 0 0 0 0 10 9 0

CONNECT-Webservices 0 0 0 0 0 0 0 0 0 0 0

Consent2Share 0 0 0 0 0 0 0 0 0 0 0

corral 18 21 10 0 0 0 0 0 8 3 0

csla 2 4 2 0 1 0 0 0 4 2 0

cws-esolutions 3 3 0 0 0 0 0 0 3 3 0

CxTest 5 0 0 0 0 0 0 0 4 0 0

dblog 29 8 3 1 0 0 0 0 20 1 0

DemoGames 9 6 1 0 0 0 0 0 2 1 0

devstudio-tooling-bps 0 0 0 0 0 0 0 0 0 0 0

DistMM 2 1 0 0 0 0 0 1 1 1 0

66

Project A B C D E F G H I J K

DL-Learner 1 0 0 0 0 0 0 0 1 0 0

doms-bitstorage 12 10 4 3 1 1 1 0 2 3 0

doms-server 33 21 16 1 1 0 0 0 18 4 0

droolsjbpm-integration 32 13 2 0 20 13 10 0 10 2 0

dssp-client 0 3 2 0 0 0 0 0 0 1 0

ebay-api-sdk-php 0 0 0 0 0 0 0 0 0 0 0

ebmsadapter 0 0 0 0 0 0 0 0 0 0 0

EDLProvider 4 5 4 3 0 1 1 0 2 1 0

EECloud 8 5 4 1 0 0 0 0 0 0 0

eqtl 0 0 0 0 0 0 0 0 0 0 0

eucalyptus 62 35 20 3 0 0 0 0 24 12 0

eve-intel-map 6 6 3 1 0 0 0 0 1 1 0

ezags-xsd 8 10 7 1 0 0 0 0 2 2 0

gds-mis 32 48 32 3 0 0 0 0 6 6 0

Gemma 2 0 0 0 0 0 0 0 0 0 0

GNDMS 46 44 30 1 4 10 2 0 20 18 0

gsn 11 9 1 0 0 4 1 0 5 2 0

Habitat 5 1 1 0 0 0 0 0 2 0 0

HandHeldInventory 4 3 0 0 0 0 0 0 0 0 0

helium 2 0 0 0 0 0 0 0 1 0 0

hotell 7 3 2 0 0 0 0 0 1 1 0

htcondor 32 32 17 0 5 3 1 0 7 2 0

idecore 14 15 8 3 0 0 0 0 12 8 0

identity-inbound-auth-oauth 3 0 0 0 0 0 0 0 0 0 0

ihub 9 7 5 0 0 0 0 0 6 0 0

incubator-stratos 10 7 3 0 4 4 0 0 5 1 0

IQ-Champions 8 3 2 0 0 0 0 0 2 0 0

67

Project A B C D E F G H I J K

iws 31 24 17 1 0 0 0 0 46 36 0

jdk7u-jdk 0 0 0 0 0 0 0 0 0 0 0

JoinToPlayClient 6 5 2 0 0 0 0 0 2 1 0

juddi 0 0 0 0 0 0 0 0 0 0 0

kask-kiosk 30 18 12 4 0 0 0 0 13 1 0

kc 22 10 7 1 2 0 0 0 6 2 0

kc.preclean 22 10 7 1 2 0 0 0 6 2 0

kdepim-ktimetracker-akonadi 13 21 20 4 7 3 2 0 7 3 0

kdepim-noakonadi 13 21 20 4 7 3 2 0 7 3 0

kopete 0 0 0 0 0 0 0 0 0 0 0

Liltarp-Assignment 10 10 8 1 0 0 0 0 3 2 0

lime-security-powerauth 30 8 3 1 0 0 0 0 0 0 0

lolsoap 5 8 6 0 4 3 0 0 4 2 0

magento2 38 43 23 4 19 23 16 0 33 18 0

mcgssg1_servidor 5 3 2 0 0 0 0 0 5 0 0

MDW 17 18 4 0 0 0 0 0 1 2 0

MDW_BattleShips 2 1 0 2 0 0 0 0 0 0 0

MOOLGOSS 9 5 2 1 0 0 0 0 2 0 0

mplus-api-wsdl 12 13 11 2 0 0 0 0 9 4 0

mule-cookbook 12 16 8 0 0 0 0 0 10 8 0

mule-wss-soap-example 0 0 0 0 0 0 0 0 0 0 0

multidatabase 9 4 1 0 0 0 0 0 0 0 0

myPress 10 7 5 0 0 0 0 0 2 0 0

NE-HSCIE-Core 13 5 2 0 0 0 0 0 7 1 0

NOTES-WEB 29 4 1 2 0 0 0 0 10 0 0

OCHP 26 18 9 1 3 0 0 0 10 2 0

ode 23 13 7 2 3 1 0 0 10 4 0

68

Project A B C D E F G H I J K

opencover 5 5 1 2 0 0 0 0 2 1 0

OpenNos 3 2 0 0 0 0 0 0 0 0 0

openspecimen 1 6 2 0 2 4 3 0 0 3 0

otrs-gitimport-test 7 9 4 2 0 0 0 0 5 2 0

oxalis 0 0 0 0 0 0 0 0 0 0 0

petals-se-activiti 13 4 0 0 0 1 1 0 2 0 0

petnet-web 62 21 2 1 0 0 0 0 10 3 0

php-amadeus 2 10 8 0 0 0 0 0 8 0 0

PizzaWaiter 22 12 9 0 0 0 0 0 9 1 0

polymony 11 5 0 1 0 0 0 0 2 0 0

processmaker 18 2 0 0 0 0 0 0 4 0 0

ProcessManager 4 1 0 0 8 5 4 1 4 1 0

product-as 1 1 0 0 0 0 0 0 0 0 0

pwm 0 1 1 0 0 0 0 0 0 0 0

python-lemonway 4 0 0 0 0 0 0 0 0 0 0

rconomic 2 0 0 1 0 0 0 0 2 0 0

rig-client 5 5 2 1 0 0 0 0 2 1 0

RSB 6 2 2 0 4 2 1 0 5 0 0

s2 5 4 3 0 0 0 0 0 2 2 0

scape 9 8 6 0 2 3 0 1 6 2 0

scheduling-server 40 36 26 2 1 2 0 0 14 9 0

sci-flex-synapse-esper-plugin 4 3 1 0 0 0 0 0 3 2 0

sdk-client-tools-protex 8 2 0 0 0 0 0 0 6 0 0

SEServerExtender 10 10 8 0 0 0 0 0 2 1 0

SevenUpdate 11 10 4 3 1 0 0 0 1 0 0

simias 102 41 17 7 0 0 0 0 17 9 0

sipXtapi 19 17 10 2 0 0 0 0 14 11 0

69

Project A B C D E F G H I J K

sones 8 10 4 5 3 3 3 0 2 3 0

sponsored-search-api-documents 0 1 1 0 0 0 0 0 0 0 0

staff 1 2 2 0 0 0 0 0 4 4 0

steve 1 2 1 1 0 0 0 0 0 0 0

stratos 35 40 17 0 0 0 0 0 6 1 0

sts 0 0 0 0 0 0 0 0 0 0 0

SwingDriver 3 1 0 0 0 0 0 0 2 1 0

Sync 8 8 5 0 0 0 0 0 1 1 0

sysmgrt 6 3 0 0 0 0 0 0 4 4 0

taverna-grid 20 24 13 2 0 0 0 0 7 6 0

tempo 30 18 8 0 0 0 0 0 5 1 0

Tennis-Middleware 8 3 2 2 0 0 0 0 2 1 0

Thesis 7 5 4 0 0 0 0 0 2 0 0

tracee 1 0 0 0 0 0 0 0 1 0 0

UltraMarket-System 5 5 4 0 0 0 0 0 5 2 0

UMProVolleyWeb 10 8 4 1 0 0 0 0 6 1 0

weblabdeusto 12 3 1 0 0 0 0 0 2 0 0

Websitepanel 1 0 0 0 1 1 1 0 0 0 0

wizard 23 13 13 4 0 0 0 0 3 0 0

wsdlgo 2 1 0 0 0 0 0 0 0 0 0

x-road-adapter-example 0 0 0 0 0 0 0 0 0 0 0

xibocms 0 0 0 0 0 0 0 0 0 0 0

xroad-catalog 1 4 2 0 0 0 0 0 2 3 0

ydn-api-documents 2 0 0 0 0 0 0 0 1 0 0

zato 6 9 6 1 0 0 0 0 0 0 0

zend-soap 0 0 0 0 0 0 0 0 0 0 0

Zero-K-Infrastructure 45 18 3 1 0 0 0 0 17 6 0

70

Project A B C D E F G H I J K

zf2 0 0 0 0 0 0 0 0 0 0 0

zuora 17 13 0 0 0 0 0 0 2 2 0

71

APPENDIX B – STATISTICS FOR MODIFICATION QUANTITIES
PER CONTRACTS AMONG COMMITS

Project Mean Standard deviation

acplugins 6.17 12.68

alloc 0.00 0.00

animated-batman 0.47 1.37

apache-ode 0.53 1.11

apollo 0.35 4.03

battleship 1.42 1.68

bearded-archer 2.57 3.36

betsy 0.38 0.72

BPEL-splitting 0.35 0.61

bpmlabs-services 3.63 4.66

btc4j-ws 1.00 1.67

bypass-stored-value 0.00 0.00

c3pr 4.88 8.92

caaers 4.94 10.30

caarray 1.48 3.24

cagrid 2.17 3.57

cagrid-core 2.36 3.52

cagrid-grid-incubation 2.22 3.07

CalendarPortlet 0.00 0.00

CallCenter 44.27 102.93

camel 1.41 1.99

capture-hpc 2.67 3.62

carbon-analytics-common 2.98 5.16

carbon-apimgt 0.78 1.30

carbon-business-messaging 1.00 1.05

carbon-business-process 1.22 1.44

73

Project Mean Standard deviation

carbon-data 1.22 1.99

carbon-deployment 3.19 4.63

carbon-event-processing 2.76 4.38

carbon-identity 2.28 6.20

carbon-identity-framework 0.56 0.88

carbon-metrics 2.33 3.98

carbon-storage-management 2.53 3.06

cartoweb3 3.33 5.34

centreon-engine 2.14 3.09

channelAdvisorAccess 11.20 19.12

corral 2.55 3.56

csla 3.30 9.49

cws-esolutions 3.22 8.45

CxTest 10.67 10.80

dblog 13.77 13.47

DemoGames 4.75 7.01

DistMM 1.57 2.44

DL-Learner 0.09 0.43

doms-bitstorage 1.49 3.22

doms-server 2.92 5.47

droolsjbpm-integration 2.00 2.87

dssp-client 2.75 4.53

ebmsadapter 0.00 0.00

EDLProvider 2.12 2.83

EECloud 1.26 3.07

eucalyptus 5.70 8.99

eve-intel-map 2.53 5.00

74

Project Mean Standard deviation

ezags-xsd 2.03 3.83

gds-mis 4.56 8.25

GNDMS 2.23 3.89

gsn 2.37 2.86

Habitat 4.83 2.86

HandHeldInventory 2.50 2.43

helium 1.80 3.49

hotell 2.21 3.12

htcondor 2.36 3.86

idecore 55.00 91.95

identity-inbound-auth-oauth 1.40 1.67

ihub 2.18 4.68

incubator-stratos 0.63 1.57

IQ-Champions 3.29 4.63

iws 7.58 16.20

jdk7u-jdk 0.00 0.00

JoinToPlayClient 7.40 10.49

juddi 0.00 0.00

kask-kiosk 12.03 25.58

kc 0.42 2.32

kc.preclean 0.42 2.32

kdepim-ktimetracker-akonadi 8.82 18.49

kdepim-noakonadi 8.82 18.49

kopete 0.00 0.00

Liltarp-Assignment 5.13 6.27

lime-security-powerauth 5.72 12.86

lolsoap 1.36 1.93

75

Project Mean Standard deviation

magento2 2.60 3.27

mcgssg1_servidor 1.00 1.25

MDW 2.48 3.76

MOOLGOSS 1.91 2.76

mplus-api-wsdl 37.00 40.48

mule-cookbook 4.93 5.07

mule-wss-soap-example 0.00 0.00

multidatabase 2.90 5.52

myPress 3.42 5.01

NE-HSCIE-Core 3.71 4.37

NOTES-WEB 17.69 40.39

OCHP 2.37 3.38

ode 0.55 1.70

opencover 2.50 3.97

openspecimen 0.80 2.20

otrs-gitimport-test 6.29 9.86

oxalis 0.00 0.00

petals-se-activiti 1.21 3.61

petnet-web 5.41 11.46

php-amadeus 1.04 4.87

PizzaWaiter 4.75 6.09

polymony 3.38 4.77

processmaker 2.00 1.22

ProcessManager 2.59 2.29

python-lemonway 8.50 10.66

rig-client 2.46 4.07

RSB 0.79 1.27

76

Project Mean Standard deviation

s2 21.20 27.13

scape 3.25 3.57

scheduling-server 6.58 13.56

sci-flex-synapse-esper-plugin 1.33 1.37

sdk-client-tools-protex 0.75 1.94

SEServerExtender 2.60 5.15

SevenUpdate 0.96 3.45

simias 4.00 6.14

sipXtapi 4.38 4.48

sones 7.13 7.82

staff 2.10 3.73

steve 1.00 2.13

stratos 2.56 3.83

sts 0.00 0.00

SwingDriver 4.75 10.81

Sync 1.45 4.63

sysmgrt 4.19 6.12

taverna-grid 2.00 4.21

tempo 2.19 2.64

Tennis-Middleware 6.00 8.77

Thesis 3.61 6.34

UltraMarket-System 3.55 2.70

UMProVolleyWeb 33.00 78.21

weblabdeusto 1.16 1.07

Websitepanel 0.80 2.53

wizard 6.31 12.11

wsdlgo 0.43 0.79

77

Project Mean Standard deviation

xibocms 0.00 0.00

xroad-catalog 3.56 5.10

zato 13.83 14.90

Zero-K-Infrastructure 4.54 6.00

zuora 3.18 12.00

78

APPENDIX C – STATISTICS FOR CONTRACTS MODIFIED PER
COMMIT

Project Mean Standard deviation

acplugins 2.94 1.76

alloc 1.00 0.00

animated-batman 1.55 1.04

apache-ode 1.37 1.17

apollo 2.43 3.06

battleship 2.40 0.89

bearded-archer 2.63 1.19

betsy 1.33 0.49

BPEL-splitting 2.13 1.55

bpmlabs-services 1.00 0.00

btc4j-ws 1.00 0.00

bypass-stored-value 1.00 0.00

c3pr 1.34 1.26

caaers 1.42 1.39

caarray 3.96 5.38

cagrid 1.55 1.33

cagrid-core 1.56 0.75

cagrid-grid-incubation 1.88 1.32

CalendarPortlet 1.25 0.71

CallCenter 2.75 1.28

camel 1.22 0.66

capture-hpc 1.00 0.00

carbon-analytics-common 2.85 0.91

carbon-apimgt 8.19 10.77

carbon-business-messaging 4.50 2.51

carbon-business-process 2.90 2.01

79

Project Mean Standard deviation

carbon-data 2.00 0.00

carbon-deployment 3.93 3.02

carbon-event-processing 2.93 2.07

carbon-identity 3.78 4.39

carbon-identity-framework 3.83 1.60

carbon-metrics 2.73 0.46

carbon-storage-management 3.00 0.00

cartoweb3 1.00 0.00

centreon-engine 1.00 0.00

channelAdvisorAccess 4.63 2.45

corral 1.32 0.67

csla 1.86 0.77

cws-esolutions 1.53 0.52

CxTest 1.00 0.00

dblog 1.00 0.00

DemoGames 2.67 0.52

DistMM 1.00 0.00

DL-Learner 2.19 1.17

doms-bitstorage 2.19 1.36

doms-server 1.57 0.96

droolsjbpm-integration 1.47 1.23

dssp-client 18.00 1.00

ebmsadapter 1.00 0.00

EDLProvider 1.70 0.67

EECloud 2.82 1.08

eucalyptus 1.00 0.00

eve-intel-map 2.83 0.75

80

Project Mean Standard deviation

ezags-xsd 2.71 2.05

gds-mis 3.42 2.23

GNDMS 3.79 4.14

gsn 5.50 1.22

Habitat 1.00 0.00

HandHeldInventory 1.20 0.45

helium 2.00 0.00

hotell 1.00 0.00

htcondor 1.54 0.81

idecore 2.44 1.24

identity-inbound-auth-oauth 4.00 0.00

ihub 1.94 0.77

incubator-stratos 5.18 5.34

IQ-Champions 2.33 0.82

iws 3.32 2.28

jdk7u-jdk 1.31 0.48

JoinToPlayClient 2.50 1.29

juddi 2.00 2.00

kask-kiosk 2.91 0.95

kc 4.13 12.89

kc.preclean 4.19 12.99

kdepim-ktimetracker-akonadi 1.67 1.19

kdepim-noakonadi 1.67 1.19

kopete 1.00 0.00

Liltarp-Assignment 2.56 0.53

lime-security-powerauth 1.50 0.59

lolsoap 2.00 0.00

81

Project Mean Standard deviation

magento2 1.41 0.78

mcgssg1_servidor 1.00 0.00

MDW 1.83 0.78

MOOLGOSS 2.44 0.88

mplus-api-wsdl 1.00 0.00

mule-cookbook 2.33 0.78

mule-wss-soap-example 1.00 0.00

multidatabase 1.91 0.83

myPress 2.71 0.49

NE-HSCIE-Core 1.05 0.22

NOTES-WEB 1.00 0.00

OCHP 1.29 0.89

ode 1.41 1.22

opencover 1.78 0.67

openspecimen 3.00 4.63

otrs-gitimport-test 1.00 0.00

oxalis 1.25 0.44

petals-se-activiti 1.89 1.03

petnet-web 1.00 0.00

php-amadeus 14.45 22.56

PizzaWaiter 3.08 1.12

polymony 2.00 0.00

processmaker 1.05 0.22

ProcessManager 1.06 0.25

python-lemonway 1.00 0.00

rig-client 1.00 0.00

RSB 1.70 1.22

82

Project Mean Standard deviation

s2 1.00 0.00

scape 1.05 0.23

scheduling-server 1.05 0.22

sci-flex-synapse-esper-plugin 4.00 0.00

sdk-client-tools-protex 30.14 33.36

SEServerExtender 6.86 5.73

SevenUpdate 3.55 1.78

simias 1.27 0.46

sipXtapi 1.03 0.16

sones 1.00 0.00

staff 1.11 0.33

steve 1.50 0.53

stratos 2.16 0.94

sts 1.33 0.48

SwingDriver 2.00 0.00

Sync 3.92 2.68

sysmgrt 2.25 1.16

taverna-grid 3.50 1.84

tempo 1.02 0.14

Tennis-Middleware 1.11 0.33

Thesis 2.57 0.53

UltraMarket-System 1.83 0.41

UMProVolleyWeb 1.00 0.00

weblabdeusto 1.06 0.24

Websitepanel 2.00 0.71

wizard 1.71 1.08

wsdlgo 1.17 0.41

83

Project Mean Standard deviation

xibocms 1.00 0.00

xroad-catalog 1.13 0.35

zato 1.00 0.00

Zero-K-Infrastructure 1.23 0.85

zuora 3.12 0.60

84

	COVER
	VERSUS
	TITLE PAGE
	INDEX CARD
	APPROVAL TERM
	EPIGRAPHY
	DEDICATORY
	ACKNOWLEDGEMENTS
	ABSTRACT
	RESUMO
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF LISTINGS
	LIST OF ABBREVIATIONS
	CONTENTS
	1 INTRODUCTION
	1.1 Objective
	1.2 Research methodology
	1.3 Relevance for computer science
	1.4 Relevance for geographic information science
	1.5 Relevance for the National Institute for Space Research (INPE)
	1.6 Originality
	1.7 Document structure

	2 FUNDAMENTALS
	2.1 Service Oriented Architecture (SOA)
	2.2 SOAP
	2.3 REST
	2.4 XML and web services
	2.5 Web Service Development
	2.6 Mining Software Repositories (MSR)
	2.6.1 MetricMiner

	3 PRELIMINARY STUDY
	3.1 Research questions
	3.2 Study methodology
	3.3 Implementation
	3.4 Study execution
	3.5 Results and analysis
	3.5.1 Answering the research questions

	3.6 Threats to validity
	3.7 Conclusions

	4 RESEARCH DESIGN AND EXECUTION
	4.1 Research questions
	4.2 Study methodology
	4.3 Projects selection
	4.4 Metrics and analysis implementation
	4.5 Data extraction execution
	4.5.1 Data validation
	4.5.2 Projects profiles
	4.5.3 Contracts changes analysis
	4.5.4 XSDMiner2 and SchemaCompare data classification

	5 RESEARCH RESULTS
	5.1 RQ1 – What is the occurrence rate of each XSD modification type?
	5.2 RQ2 – With which pace XSD modifications include or exclude information?
	5.3 RQ3 – How is the distribution of modifications among commits?

	6 CONCLUSIONS
	6.1 Contributions
	6.2 Future work

	REFERENCES
	A APPENDIX A – TOTAL CONTRACTS REVISIONS WITH EACH TYPE OF MODIFICATION PER PROJECT
	B APPENDIX B – STATISTICS FOR MODIFICATION QUANTITIES PER CONTRACTS AMONG COMMITS
	C APPENDIX C – STATISTICS FOR CONTRACTS MODIFIED PER COMMIT

