MINISTÉRIO DO EXÉRCITO
ESTADO-MAIOR DO EXÉRCITO

Manual de Campanha

LANÇA-CHAMAS PORTÁTIL
LCT1 M1

1ª Edição
1984
Manual de Campanha

LANÇA-CHAMAS PORTÁTIL LCT1 M1

1ª Edição
1984

Preço Cr$
Portaria Nº 071 — EME, de 25 de setembro de 1984

MANUAL DE CAMPAANHA C 23–33
(APROVAÇÃO)

O CHEFE DO ESTADO-MAIOR DO EXÉRCITO, usando das atribuições que lhe confere o Art 55 das “Instruções Gerais para as Publicações do Ministério do Exército” (IGPMEx), aprovadas pela Portaria Ministerial Nº 1335, de 04 de setembro de 1975,

RESOLVE

Gen Ex JOSÉ MAGALHÃES DA SILVEIRA
Chefe do EME
NOTA

Solicita-se aos usuários deste manual a apresentação de sugestões que tenham por objetivo aperfeiçoá-lo ou que se destinem à supressão de eventuais incorreções.

As observações apresentadas, mentionando a página, o parágrafo e a linha do texto a que se referem, devem conter comentários apropriados para seu entendimento ou sua justificação.

A correspondência deve ser enviada diretamente ao EME, de acordo com o Art 71 das IGPMEx, podendo ser utilizada a carta-resposta constante do final desta publicação.
<table>
<thead>
<tr>
<th>CAPÍTULO 1 – GENERALIDADES</th>
<th>Prf</th>
<th>Pag</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARTIGO I – Introdução</td>
<td>1-1</td>
<td>1- 1</td>
</tr>
<tr>
<td>ARTIGO II – Concepção geral do emprego do lança-chamas e seus principais efeitos</td>
<td>1-3 a 1-5</td>
<td>1- 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAPÍTULO 2 – DESCRIÇÃO GERAL</th>
<th>Prf</th>
<th>Pag</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARTIGO I – Dados técnicos</td>
<td>2-1</td>
<td>2- 1</td>
</tr>
<tr>
<td>ARTIGO II – Desmontagem, Montagem e Manutenção de 1º escalão</td>
<td>2-4 a 2-7</td>
<td>2- 3</td>
</tr>
<tr>
<td>ARTIGO III – Desmontagem, Montagem e Manutenção de 2º escalão</td>
<td>2-8 a 2-10</td>
<td>2- 5</td>
</tr>
<tr>
<td>ARTIGO IV – Incidentes de tiro mais comuns</td>
<td>2-11</td>
<td>2-11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAPÍTULO 3 – FORMAÇÃO DO COMBATENTE</th>
<th>Prf</th>
<th>Pag</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARTIGO I – Generalidades</td>
<td>3-1</td>
<td>3- 1</td>
</tr>
<tr>
<td>ARTIGO II – Técnicas de tiro</td>
<td>3-3 a 3-5</td>
<td>3- 3</td>
</tr>
<tr>
<td>ARTIGO III – Posições de tiro</td>
<td>3-6 a 3-7</td>
<td>3- 5</td>
</tr>
<tr>
<td>ARTIGO IV – Abordagem do alvo</td>
<td>3-8</td>
<td>3- 8</td>
</tr>
<tr>
<td>ARTIGO V – Adestramento</td>
<td>3-9 a 3-10</td>
<td>3-10</td>
</tr>
<tr>
<td>ARTIGO VI – Instruções para operações</td>
<td>3-11 a 3-13</td>
<td>3-13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAPÍTULO 4 – SEGURANÇA DO TIRO</th>
<th>Prf</th>
<th>Pag</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4-1</td>
<td>4- 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAPÍTULO 5 – EMPREGO TÁTICO</th>
<th>Prf</th>
<th>Pag</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARTIGO I – Generalidades</td>
<td>5-1</td>
<td>5- 1</td>
</tr>
<tr>
<td>ARTIGO II – Emprego do lança-chamas nas operações ofensivas</td>
<td>5-2 a 5-4</td>
<td>5- 2</td>
</tr>
<tr>
<td>Prf</td>
<td>Pag</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>ARTIGO III – Emprego do lança-chamas nas operações defensivas</td>
<td>5– 5 e 5– 6</td>
<td></td>
</tr>
<tr>
<td>CAPÍTULO 6 – COMBUSTÍVEL E UNIDADE MÓVEL DE CARREGAMENTO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARTIGO I – Combustível</td>
<td>6– 1 a 6– 3</td>
<td></td>
</tr>
<tr>
<td>ARTIGO II – Unidade móvel de carregamento</td>
<td>6– 4 a 6– 5</td>
<td></td>
</tr>
<tr>
<td>CAPÍTULO 7 – PROCEDIMENTOS ADMINISTRATIVOS</td>
<td>7– 1 a 7– 3</td>
<td></td>
</tr>
<tr>
<td>ANEXO A – DIAGRAMA DO CONJUNTO TUBO-ARMA</td>
<td>A– 1</td>
<td></td>
</tr>
<tr>
<td>ANEXO B – DIAGRAMA DO CONJUNTO DE RESERVATÓRIOS</td>
<td>B– 1</td>
<td></td>
</tr>
<tr>
<td>ANEXO C – DIAGRAMA DO DISPOSITIVO DE TRANSPORTE</td>
<td>C– 1</td>
<td></td>
</tr>
<tr>
<td>ANEXO D – RELAÇÃO DE SOBRESSALENTES E ACESSÓRIOS</td>
<td>D– 1</td>
<td></td>
</tr>
</tbody>
</table>
CAPÍTULO 1
GENERALIDADES

ARTIGO I
INTRODUÇÃO

1-1. FINALIDADE

Proporcionar uma orientação doutrinária para o emprego e o manuseio do lança-chamas portátil.

1-2. CONSIDERAÇÃO INICIAL

O lança chamas portátil, no momento, é dotação das unidades de infantaria, no entanto, poderá vir a ser utilizado por elementos de outras armas, conforme as necessidades de emprego.

ARTIGO II
CONCEPÇÃO GERAL DO EMPREGO DO LANÇA-CHAMAS E SEUS PRINCIPAIS EFEITOS

1-3. HISTÓRICO

a. O emprego da chama em operações de combate, ainda que sob forma empírica e rudimentar, vem se fazendo desde a mais remota antiguidade. São encontradas referências bíblicas sobre o uso de incendiários por exércitos que atacavam ou defendiam as cidades fortificadas. Durante a guerra do Peloponeso, entre ATENAS e ESPARTA (431 a 404 AC), por ocasião do sítio da cidade de DÉLIO em 423 AC, foi usado pelos espartanos um ancestral do atual lança-chamas. Era constituído por
um tronco oco de árvore, em cuja extremidade inferior era adaptado um recipiente cheio de carvão inflamado, enxofre, resinas e panos. Uma espécie de fole lançava o material inflamado sob a forma de jatos, provocando incêndios nas fortificações inimigas, auxiliando os sitiantes na conquista da cidade. Durante toda a Antiguidade e parte da Idade Média, os incendiários caracterizaram grandes destruições, até que a descoberta da pólvora afastou os combatentes e fez declinar pouco a pouco sua utilização, pois na época não haviam recursos para aumentar o alcance dos lançamentos, nem incendiários suficientemente poderosos para vencer os abrigos surgidos.

b. Somente na Primeira Guerra Mundial os incendiários iniciaram seu ressurgimento como importante arma de guerra. Os lança-chamas foram utilizados pelos alemães, porém sem grandes resultados práticos, pois eram muito rudimentares e de manipulação perigosa. A Segunda Guerra Mundial veio demonstrar que o lança-chamas havia recuperado, com vantagem, a sua importância na guerra. Os processos técnicos de fabricação e a descoberta da gasolina gelatinosa, proporcionaram ao lança-chamas, maior alcance e precisão nos tiros, destacando-o entre as mais modernas armas de guerra até nossos dias.

1-4. PRINCIPAIS EFEITOS PROVOCADOS PELA CHAMA

a. Efeito letal ou incapacitação prolongada — Causar baixas por meio de:
 (1) queimaduras provocadas pela aderência da gasolina gelatinosa na pele e nas roupas do combatente;
 (2) asfixia pela inalação dos gases provenientes da queima do combustível, provocando problemas respiratórios;
 (3) choque proveniente dos efeitos anteriores.

b. Efeito psicológico
 (1) Por meio do temor natural do homem pelo fogo.
 (2) Desmoronamento do inimigo provocando o abandono de posições fortificadas, expondo-o ao tiro de outras armas e com possibilidades de captura.

c. Efeito incendiário — Provocando incêndios em instalações em geral, depósitos de suprimentos, munições e combustíveis.

1-5. PRINCÍPIOS GERAIS DE EMPREGO

a. Generalidades
 (1) O Lança-Chamas Portátil LCT1 M1 é uma arma de uso eventual, estando seu emprego condicionado à autorização do escalão superior.
 (2) O uso eficaz do lança-chamas está condicionado ao nível de instrução e à prática do atirador.
 (3) O lança-chamas portátil é uma arma de pequeno alcance, destinada ao emprego direto. É utilizado quase que exclusivamente para o ataque, podendo em casos especiais ser empregado como arma defensiva.
(4) O lança-chamas será utilizado pelo combatente, na ocasião em que surgirem alvos adequados para o seu emprego.

b. Bases para o emprego

(1) Os lança-chamas são empregados por equipes cuja constituição varia de acordo com o tipo de missão recebida.

(2) No conceito atual, a menor equipe é constituída por dois atiradores trabalhando sob a proteção do fogo de armas portáteis e coberturas fumígenas.

(3) Dois homens por grupo de combate (GC) deverão receber instrução específica de atirador de lança-chamas. O restante do grupo deverá ser familiarizado com o emprego dessa arma a fim de que, se necessário, possam substituir os eventuais atiradores.

(4) Por se tratar de uma arma de uso eventual, as subunidades de fuzileiros serão reforçados por elementos de lança-chamas fornecidos pelo Pelotão de Sapadores, quando for necessário o emprego desse armamento.

(5) Os lança-chamas e os equipamentos para o seu emprego serão dotação do Pelotão de Sapadores dos batalhões de infantaria. Para tal, deverão ser formados dois atiradores de lança-chamas por grupo de sapadores, ficando os demais elementos em condições de operá-lo.

(6) A manutenção de 19 escalão dos lança-chamas e os respectivos equipamentos serão responsabilidade dos elementos do Pel Sap.

(7) O recarregamento do lança-chamas será executado por meio de uma unidade móvel de carregamento que permanecerá estacionado na área de trem de combate do batalhão. O motorista da viatura tratora da unidade móvel de recarregamento será o responsável pela operação deste equipamento.
CAPÍTULO 2
DESCRIÇÃO GERAL

ARTIGO I
DADOS TÉCNICOS

2-1. INTRODUÇÃO

O lança-chamas modelo LC T1 M1 é uma arma portátil de fabricação nacio-
nal que utiliza fluxo de ar ou nitrogênio altamente comprimido para lançar o com-
bustível inflamado sobre o alvo.

2-2. CARACTERÍSTICAS

a. Alcance
 (1) Combustível líquido De utilização 25 m. Máximo 30 m.
 (2) Combustível espessado De utilização 50 m. Máximo 70 m.

b. Duração do tiro
 (1) Rajadas contínuas Aproximadamente 10 segundos.
 (2) Rajadas intermitentes Várias pequenas rajadas, totalizando
 aproximadamente 10 segundos; não
 incluído o tempo entre as rajadas.

c. Peso
 (1) Lança-Chamas Portátil LC T1 M1 vazio, na em-
 balagem (inclusive a caixa e todos os acessó-
 rios) 44,00 kg
 (2) Lança-Chamas Portátil LC T1 M1 vazio, com
 tubo arma 21,00 kg
 (3) Lança-Chamas Portátil LC T1 M1 abastecido
 de combustível com tubo arma 34,00 kg
(4) Conjunto de reservatórios, vazio, sem tubo-arma ... 17,200 kg
(5) Conjunto de reservatórios, cheio, sem tubo-arma ... 29,600 kg
(6) Sistema tubo-arma com pilha ... 4,400 kg
(7) Sistema tubo-arma sem pilha ... 3,800 kg
d. Dimensões
 (1) Tubo-arma (comprimento) ... 0,61 m.
 (2) Mangueira de combustível (comprimento) ... 1,11 m.
 (3) Conjunto de reservatórios (altura) .. 0,70 m.
 (4) Conjunto de reservatórios (largura) .. 0,46 m.
 (5) Conjunto de reservatórios (profundidade) ... 0,23 m.
 (6) Caixa de embalagem ... 0,24 x 0,56 x 0,85 m.
e. Capacidade
 - Combustível ... 18 litros
f. Pressões
 (1) Reservatório de pressão .. 150 a 200 kgf/Cm²
 (2) Reservatório de combustível .. 25 kgf/Cm² ou 355 1pq

2-3. DESCRIÇÃO DO LANÇA-CHAMAS

a. Cada arma terá, para sua identificação, o número de série, a nomenclatura e o nome do fabricante inscrito no corpo da válvula de combustível (Fig 2-1 A) e na corrediça do reservatório de pressão (Fig 2-1 B).

![Fig 2-1. Locais de identificação](image)
b. O lança-chamas portátil é constituído de 2 (dois) conjuntos principais adiante descritos.

 (1) Conjunto de reservatórios (Fig 2–1 C)
 (2) Conjunto tubo-arma (Fig 2–2)

Fig 2–2. Conjunto tubo-arma

c. Conjunto de reservatórios – Este conjunto é originário da associação de um dispositivo e de dois sistemas.

 (1) Dispositivo de transporte – Destinado a acomodar o conjunto de reservatórios às costas do atirador. Este dispositivo é composto basicamente de uma armação de alumínio, de uma lona reforçada servindo de almofada, de cordões de amarração, e de suspensórios ajustáveis ao atirador (Fig 2–3 A).

 (2) Sistema de pressão – Responsável pelo suprimento de ar comprimido ou nitrogênio para o sistema de combustível, tornando possível o lançamento deste através do conjunto do tubo-arma. É constituído pelas partes que adiante se seguem.

 (a) Reservatório de alta pressão (Fig 2–4) – É um cilindro leve de aço sem costura, capaz de suportar grandes pressões. O reservatório tem capacidade suficiente para ejetar todo o combustível ao máximo alcance. A braçadeira do reservatório de pressão (Fig 2–3 B) é um dispositivo de aço, com dobradiça e fivela, localizada sob os reservatórios de combustível.

 (b) Válvula do reservatório de alta pressão (Fig 2–4 B) – Montada na parte superior do cilindro. É uma válvula de ação rápida tipo agulha, com trés derivações, cujo volante de comando encontra-se montado no ramo principal. Nas derivações secundárias encontram-se montadas, a válvula de carregamento e a saída de alta pressão (Fig 2–4 D).
Fig 2–3. Conjunto de reservatórios

(c) Válvula de carregamento (Fig 2–4 C) — Montada na derivação secundária da válvula de alta pressão. É de funcionamento irreversível, abre-se para permitir a entrada de propelente e fecha-se quando a pressão externa deixar de atuar. A porca protetora (Fig 2–4 E) desta válvula só deverá ser retirada no momento do carregamento.

(d) Mangueira de alta pressão (Fig 2–1 D) — É a tubulação que liga o reservatório de alta pressão ao regulador de pressão.

(e) Regulador de pressão (Fig 2–3 C) — Localizado entre os reservatórios de combustível, reduz automaticamente a pressão fornecida pelo cilindro para uma pressão constante de operação de aproximadamente 25,0 Kgf/cm² em cada reservatório de combustível.
Fig 2-4. Reservatório de alta pressão

(f) Válvula anti-retorno (Fig 2-5 B) e cabeça de segurança (Fig 2-5 C) — A válvula anti-retorno, montada na saída do regulador de pressão, impede o retorno do combustível dos reservatórios para as válvulas, quando o atirador interrompe o tiro. A cabeça de segurança, com a mesma constituição interna da válvula de segurança, serve como segurança adicional no caso de falha da válvula de segurança do reservatório de combustível. O selo da cabeça de segurança (Fig 2-5 D) rompe-se a uma pressão situada entre 33 a 37 Kgf/cm². A válvula anti-retorno inclui, ainda, o corpo da válvula (Fig 2-5 A), a agulha (Fig 2-5 E) e a mola (Fig 2-5 F).

Fig 2-5. Conjunto da válvula anti-retorno
(g) Tubulação difusora (Fig 2-6 E) — Este tubo, em forma de “T”, destina-se à passagem da pressão reduzida pelo regulador ao interior dos reservatórios de combustível.

![Diagrama de reservatórios](image)

Fig 2-6. Conjunto de reservatórios

(3) Sistema de combustível — Destinado a armazenar combustível e transportá-lo sob pressão, até o conjunto do tubo-arma. É constituído das partes que se seguem.

(a) Reservatórios de combustível (Fig 2-6 A) — São dois reservatórios cilíndricos, conjugados (Fig 2-6 B), com uma capacidade de cerca de 19 litros, sendo 18 litros para o combustível e 1 (um) litro para permitir a entrada e a expansão do propelente.

(b) Buíões de carregamento (Fig 2-6 F) — Os buíões de carregamento ajustam-se nas aberturas roscadas da parte superior dos reservatórios de combustível. Eles permitem abastecer e limpar os reservatórios. Os buíões possuem um ori-
fíció roscado onde, em um deles, é adaptada a válvula de drenagem e, no outro, a válvula de segurança. Dos bujões, fazem parte, ainda, o conjunto de retentores, constituído de dois anéis de metal e uma corrente que impedem a perda acidental dos bujões.

(c) Válvula de drenagem (Fig 2–6 G) — É utilizada para liberar a pressão restante no interior dos reservatórios de combustível, antes do seu carregamento.

(d) Válvula de segurança do reservatório de combustível (Fig 2–6 H) — Mantém a pressão nos reservatórios dentro dos limites preestabelecidos, rompendo-se em caso de aumento excessivo de pressão.

(e) Tubulação de combustível (Fig 2–6 C) — É a tubulação metálica por onde o combustível sai dos reservatórios. Uma extremidade está soldada à união dos reservatórios (Fig 2–6 B). Na outra, encontra-se montado o conector.

(f) Braçadeira da armação (Fig 2–6 D) — Esta pequena braçadeira de metal, com parafuso, porca e arruela, mantém a tubulação de combustível preso à armação do dispositivo de transporte.

(g) Conector (Fig 2–7) — Faz a união do conjunto de reservatórios ao conjunto tubo-arma, ligando a tubulação de combustível dos reservatórios à mangueira de combustível do tubo-arma. O engate rápido do conector (Fig 2–8 A) torna possível a substituição rápida do conjunto tubo-arma no conjunto de reservatórios (Fig 2–8). O bujão de engate (Fig 2–8 B) serve para obstruir o conector quando da retirada do conjunto tubo-arma.

Fig 2–7. Conector
d. Conjunto tubo-arma (Fig 2–2) — É o conjunto transportado nas mãos do atirador. É responsável pela ignição do combustível e o seu direcionamento até o alvo. É composto das partes que se seguem.

(1) Mangueira de combustível (Fig 2–9 A) — É um tubo de borracha sintética reforçada com uma capa de arame e tecido de algodão trançado. Liga a tubulação de combustível dos reservatórios ao tubo-arma propriamente dito. É constituída de dois terminais.

 (a) Terminal com rosca (Fig 2–9 C) — Liga a mangueira ao corpo da válvula de combustível (Fig 2–10 C).

 (b) Terminal com junção (Fig 2–9 B) — Une a mangueira ao conector da tubulação de combustível dos reservatórios.
(2) Sistema de ignição — Responsável pela inflamação do combustível que deixa a boca do expansor. Dele fazem parte as que adiante se seguem.

(a) Suporte do tubo porta-pilhas — O tubo porta-pilhas é mantido na parte superior e paralelamente ao tubo-arma por dois suportes de alumínio. O anterior, (Fig 2—9 D) fixado na parte de cima da cabeça de ignição, possui uma bucha de PVC roscada internamente para receber o tubo. No fundo da bucha está situado o contato elétrico que vem do circuito centelhador. O suporte posterior (Fig 2—9 E), soldado à parte superior do corpo da válvula de combustível, é roscado internamente para receber o terminal com circuito e lâmpadas de teste.

(b) Tubo porta-pilhas (Fig 2—9 F) — É um tubo de PVC, que possui em sua parte anterior, um bujão metálico que atua como terminal elétrico e batente de mola. É roscado externamente para se adaptar ao suporte anterior. Internamente possui um tubo de latão que, liga uma extremidade a outra, possibilitando a utilização do circuito de teste.

(c) Terminal com circuito de testes (Fig 2—9 G) — Constitui-se de um bujão de cabeça recartilhada que abriga em seu interior o circuito de testes. Na parte posterior existem dois orifícios através dos quais são visíveis as lâmpadas de teste.

(d) Punho com circuito centelhador (Fig 2—9 H) — O punho, situado na parte anterior do tubo-arma, abriga em seu interior o circuito eletrônico responsável pelo centelhamento. Esse circuito compactado e blindado é completamente a prova de água. Transforma os 12V fornecidos pela fonte de alimentação em cerca de 20.000V que, levados às agulhas da cabeça de ignição, estabelecem o arco-voltaico.
O gatilho (Fig 2—10 A) situa-se na parte anterior do punho e funciona basicamente como um interruptor comum e possui um dispositivo de segurança com duas posições em segurança "S" e fogo "F" (Fig 2—10 B).

(e) Fonte de alimentação (Fig 2—9 I) — A fonte de alimentação é constituída de oito pilhas médias alcalinas, de 1,5V cada. A colocação das pilhas no tubo deve ser feita com o polo negativo voltado para a cabeça de ignição. A fonte de alimentação, quando nova, tem possibilidade de alimentar o circuito centelhador para, no mínimo, quinhentas missões de tiro.

(f) Cabeça de ignição (Fig 2—9 J) — É uma peça cilíndrica, de alumínio, com furo central para passagem da boca do expansor e que é fixada ao punho através de uma porca. Sobre ela encontra-se montado o suporte anterior do tubo porta-pilhas. O seu terço posterior é roscado externamente para receber o bocal protetor (Fig 2—9 L). Na sua face anterior encontra-se o orifício do terminal elétrico (Fig 2—9 M) do circuito centelhador, onde existem três tubos, um dentro do outro. O tubo externo, de latão, está ligado diretamente à massa e é preso à cabeça de ignição por meio de dois parafusos "Allem" com cabeça; o intermediário, de porcelana, assegura o isolamento entre os dois; o interno, de cobre, recebe a alta tensão do circuito centelhador. Aos dois tubos metálicos encontram-se soldados os dois porta-agulhas, que têm orifícios horizontais para alojarem as agulhas e orifícios verticais, roscados, para os parafusos de apressamento das agulhas, entre as quais se estabelece o arco-voltáico.

(g) Bocal protetor (Fig 2—9 L) (Câmara de combustão) — É uma peça cilíndrica, dupla e aletada até o terço médio e roscada internamente na parte de trás para se adaptar à cabeça de ignição. Entre o bocal protetor e a base roscada da cabeça de ignição existe um anel de vedação que tem por objetivo impedir que o combustível retido no bocal passe através das roscas e escorre sobre a mão do atirador. O bocal protetor tem por finalidade reter o gás do combustível expelido, para
facilitar a combustão e proteger os terminais elétricos da cabeça em caso de queda acidental do tubo-arma.

(3) Conjunto da válvula de combustível (Fig 2–11) — Este conjunto inclui o cano, o sobre-cano, a alavanca de combustível, o corpo da válvula e demais peças que estão contidas no interior do cano e do corpo da válvula.

Fig 2–11. Conjunto da válvula de combustível

(a) Corpo da válvula (Fig 2–11 B) — Peça de alumínio localizada à retaguarda do tubo-arma e que possui quatro grandes aberturas com rosca. A abertura inferior é a da alavanca da válvula de combustível; a abertura que forma um "Y" com a porção principal do corpo é ligada ao conjunto da mangueira de combustível; a abertura posterior é fechada pelo parafuso (Fig 2–11 P). Em sua parte superior, se encontra o suporte traseiro do tubo porta-pilhas.

(b) Válvula de combustível (Fig 2–10 C) — É constituída das partes que adiante se seguem.

— Haste de forqueta (Fig 2–11 C) — É uma haste de aço usinada em uma única peça com a esfera da válvula que se prolonga através da abertura da porca de retenção e tem sua extremidade superior fixada à forqueta e a inferior, à alavanca de combustível.
Forqueta (Fig 2–11 D) — É uma peça de metal em forma de "Y", fixada à parte superior da haste da forqueta. A forqueta transmite o movimento da haste ao bloque da forqueta e está alojada no interior da válvula.

Coifas (inferior e superior) (Fig 2–11 E) — São duas peças circulares, de metal, que mantêm o anel de vedação centrado na esfera.

Anel de vedação (Fig 2–11 F) — É um retentor de borracha ao qual o centro da esfera se ajusta, completando a vedação.

Porca de retenção (Fig 2–11 G) — É uma redução rosada que se atarraxa na abertura inferior do corpo da válvula e mantém as peças do conjunto em seus devidos lugares. A haste da forqueta se prolonga à alavanca de combustível, (Fig 3–11 Q) através da abertura existente na porca de retenção.

Protetor (Fig 2–11 H) — É uma peça de borracha sintética, sanfonada e oca, que, envolvendo a junta esférica, impede a entrada de poeira naquela junta.

Mola da válvula (Fig 2–11 I) — É uma mola espiral, localizada no corpo da válvula, entre o parafuso tampão (Fig 2–11 P) e o bloco da forqueta.

Bloco de forqueta (Fig 1–11 J) — É uma peça de aço de 22 mm de comprimento, com rosas internas que se atarraxam na parte posterior da agulha, possuindo dois chanfros laterais que se encaixam na forqueta.

Contra-porca (Fig 2–11 L) — Prande a forqueta à agulha.

Agulha da válvula (Fig 2–11 M) — É uma haste pontuda, situada no interior do cano, que vai do bloco da forqueta ao expansor (boca do cano). A agulha controla a passagem de combustível pelo expansor. Possui dois conjuntos de três aletas que servem de guias para mantê-la centralizada no interior do cano. A extremidade posterior rosada é fendida e permite o ataraxamento do bloco da forqueta e da contra-porca, através de uma chave de fenda.

Cano (Fig 2–11 N) — Consiste de um tubo de metal fino com encaixes em ambas as extremidades e um expansor (Fig 2–11 R) soldado na parte da frente. Por ele passa o combustível até a cabeça de ignição.

Sobre-cano (Fig 2–11 O) — É um peça de metal oca, com arruelas de encosto soldadas em ambas as extremidades e com porcas recortilhadas que servem para unir o conjunto punho, cabeça de ignição e cano, ao corpo da válvula de combustível, dando rigidez ao tubo-arra

ARTIGO II

DESMONTAGEM, MONTAGEM E MANUTENÇÃO DE 1º ESCALÃO

2.4. GENERALIDADES

a. O Lança-Chamas Portátil LC T1 M1, para efeito de manutenção, divide-se, genéricamente, em conjunto de reservatórios e conjunto tubo-arra.

b. As ferramentas, acessórios e os sobressalentes fornecidos com cada lança-chamas, são normalmente suficientes para a manutenção até 2º escalão.
c. Antes de iniciar a manutenção de qualquer parte do lança-chamas, verificar se é compatível com o escalão de sua responsabilidade. Não realizar manutenção para a qual não esteja habilitado.

2.5. MANUTENÇÃO PREVENTIVA ANTES DO DISPARO

a. Consiste numa verificação do estado geral do armamento.

b. Verificar o perfeito funcionamento das válvulas, conexões, roscas e mangueiras, realizando a limpeza, aperto ou substituição onde for necessário.

c. Verificar todos os componentes do dispositivo de transporte e ajustá-los convenientemente.

d. As mangueiras que apresentarem rachaduras deverão ser substituídas.

e. No bocal do tubo-arma deverá ser verificada a limpeza e principalmente a distância de 3,5 mm recomendada entre as agulhas de ignição.

f. Verificar o tubo porta-pilha, terminal e pilhas, realizando o teste da fonte de alimentação.

2-6. DESMONTAGEM E MANUTENÇÃO DE 1º ESCALÃO

a. Medidas preliminares
 (1) Fechar a válvula do reservatório de alta pressão.
 (2) Retirar o ar dos reservatórios de combustível, agindo na alavanca da válvula de combustível do tubo-arma e na válvula de drenagem do bujão de carregamento.
 (3) Separar o conjunto de reservatórios do conjunto tubo-arma, agindo no engate rápido (Fig 2—8 A), tendo o cuidado de colocar o bujão de engate (Fig 2—8 B) para evitar escoamento do combustível.

![Fig 2-12. Tubo-arma](image-url)
b. Sequência da desmontagem
(1) Separar a mangueira de combustível do restante do tubo arma, desatarraxando-a do corpo da válvula de combustível.
(a) A mangueira deve ser limpa e seca.
(b) Guardar a mangueira em local seco e arejado.
(2) Retirar o bocal protetor da chama, girando-o no sentido anti-horário.
Examinar e limpar o anel de vedação (Fig 2–12 A).
(3) Verificar se as agulhas de ignição estão nos seus locais, limpas, secas e na distância recomendada. Caso necessário, utilizar o calibrador existente na chave combinada (Fig 2–12 B) que se encontra alojada no parafuso do corpo da válvula de combustível. Para limpá-las, utilizar a escova embutida na base da alavanca da válvula de combustível.
(4) Verificar se o punho com circuito centelhador (Fig 2–12 C) funciona corretamente, acionando o gatilho e estabelecendo o arco voltagico nas agulhas de ignição. (Fig 2–12 D). O punho é blindado e completamente a prova d’água. O circuito centelhador é projetado para transformar 12 volts em 20.000 volts; portanto, não se deve apertar o gatilho com a mão sobre as agulhas de ignição, pois provocará um choque de relativa violência.
(5) Verificar se a alavanca da válvula de combustível (Fig 2–12 E) está funcionando perfeitamente, bem como se a ponta da agulha da válvula de combustível tangencia o diâmetro menor do expansor (Fig 2–12 F) quando a alavanca for acionada para frente. Se não tangenciar, regular a agulha da válvula de combustível (2º escalão).

Fig 2–13. Conjunto tubo arma
(6) Retirar o terminal com circuito de teste (Fig 2–13 A) do tubo portapilha (Fig 2–13 B), girando-o no sentido anti-horário.
(7) Retirar as pilhas e limpar o tubo internamente.
(8) Procedimento para retirar o reservatório de alta pressão:
 (a) verificar se a válvula do reservatório de alta pressão (Fig 2–14 A) está fechada;
 (b) desatarraxar o engate rápido (Fig 2–14 B) existente entre a saída da válvula e a tubulação de alta pressão;
 (c) desatarraxar a porca-borboleta da braçadeira do reservatório de alta pressão (Fig 2–14 C);
 (d) retirar o reservatório de alta pressão de seu alojamento.
(9) Retirar o bujão de engate (Fig 2–8 B) para escoar o combustível restante nos reservatórios.
(10) Retirar os bujões de carregamento desatarraçando-os de seus alojamentos (Fig 2–6 F).
(11) Limpar internamente os reservatórios de combustível utilizando gasolina pura.
(12) Limpar e secar o transportador caso esteja molhado e substituir os componentes de lona que estiverem danificados.
Fig 2-15. Desmontagem de 1º escalão

2-7. MONTAGEM DE 1º ESCALÃO

a. Colocar os bujões de carregamento em seus alojamentos nos reservatórios de combustível.

b. Colocar o reservatório de alta pressão em seu alojamento.

c. Atarraxar a porca-borboleta da braçadeira do reservatório de alta pressão.

d. Atarraxar o engate rápido no reservatório de alta pressão.

e. Colocar o terminal com circuito de teste no tubo porta-pilhas.

f. Colocar o bocal protetor da chama.

 g. Atarraxar a mangueira ao corpo da válvula de combustível do conjunto tubo-arra.

h. Unir o conjunto tubo-arma ao conjunto de reservatórios agindo no engate rápido da tubulação de combustível.

ARTIGO III

DESMONTAGEM, MONTAGEM E MANUTENÇÃO DE 2º ESCALÃO

2-8. GENERALIDADES

a. A desmontagem e manutenção de 2º escalão é realizada pelo pessoal de manutenção orgânica da unidade devidamente habilitado para tal.
b. A desmontagem de 2ª escalão só poderá ser executada após a desmontagem de 1ª escalão.

2-9. DESMONTAGEM E MANUTENÇÃO DE 2ª ESCALÃO

a. Do sistema de ignição
 (1) Retirar o parafuso do porta-agulhas (Fig 2-11 A) sobressalente e com a chave “Allem” nele embutida, retirar os parafusos e o terminal elétrico, puxando o conjunto para a frente (Fig 2-9 M).
 (2) Retirar a alavanca de combustível com sua borracha protetora e com a chave especial nela solidária (Fig 2-11 Q), retirar a porca de retenção (Fig 2-9 N) da cabeça de ignição (Fig 2-9 J).
 (3) Retirar a cabeça de ignição, puxando-a para frente, no eixo do cano, evitando torções.
 (4) Retirar o tubo porta-pilhas (Fig 2-9 F) girando-o no sentido anti-horário.
 (5) Desatararzar a porca anterior do sobre-cano (Fig 2-11 Q) e retirar o punho com circuito centelhador (Fig 2-9 H) puxando-o para frente.
 (6) Todas as peças desmontadas deverão ser limpas e secas.
 (7) Se as agulhas de ignição estiverem defeituosas, substituí-las utilizando as agulhas sobressalentes existentes no alojamento do parafuso tampão da válvula de combustível.
 (8) Se o terminal elétrico apresentar qualquer outro defeito, substituir todo o conjunto.

b. Da válvula de combustível
 (1) Retirar o parafuso tampão da extremidade da válvula de combustível (Fig 2-11 P) e a mola da válvula (Fig 2-11 I).
 (2) Desatararzar a porca de retenção (Fig 2-11 G) e retirar o conjunto da forqueta (Fig 2-11 C, D, E, F).
 (3) Retirar a agulha da válvula (Fig 2-11 M) fazendo-a deslizar para fora do cano (Fig 2-11 N). Se necessário, retirar o bloco da forqueta (Fig 2-11 J) e a contra-porça (Fig 2-11 L).
 (4) Agir na porca posterior do conjunto cano sobre-cano (Fig 3-11 O), separando-o do corpo da válvula de combustível (Fig 3-11 B).
 (5) Separar o cano do sobre-cano.
 (6) Todas as peças desmontadas deverão ser limpas e secas.
 (7) Verificar se os anéis de vedação apresentam desgastes. Caso ocorra, substituí-los.

c. Do dispositivo de transporte
 (1) Retirar o dispositivo de transporte usando uma chave de fenda para soltar a presilha da armação e os dois pares de parafusos que prendem a armação às partes superiores e inferiores do conjunto de reservatórios de combustível. (Fig 2-3)
(2) Retirar os suspensórios e cintos, desalojando-os de seus encaixes.
(3) Desamarrar os cordões e retirar a lona.
(4) Manter o dispositivo de transporte limpo e seco.
(5) Se houver peças danificadas, substituí-las.

Fig 2–16. Desmontagem de 2º escalão

2-10. MONTAGEM DE 2º ESCALÃO

a. Do dispositivo de transporte
 (1) Adaptar a lona na armação do dispositivo de transporte, amarrando-a através dos cordões.
 (2) Encaixar os cintos e suspensórios em seus alojamentos.
 (3) Parafusar a armação em seus encaixes no conjunto de reservatórios.

b. Da válvula de combustível
 (1) Unir o cano ao sobre-cano.
 (2) Agir na porca posterior do conjunto cano sobre-cano, atarraxando-a ao corpo da válvula de combustível.
 (3) Colocar a agulha da válvula de combustível fazendo-a deslizar através do corpo da válvula, para o interior do conjunto cano sobre-cano.
 (4) Colocar o conjunto da forqueta e atar um dado porca de retenção. Verificar se a ponta da agulha tangencia o diâmetro menor do expansor (Fig 2–11 R)
quando o conjunto da forqueta for acionado para frente. Caso seja necessário ajustar a agulha, proceder da seguinte forma:

(a) desatarraxar a porca de retenção do conjunto da forqueta;
(b) retirar o conjunto da forqueta;
(c) retirar a agulha de seu alojamento, até possibilitar o manuseio do bloco da forqueta e contra-porca;

(d) agir no bloco da forqueta e contra-porca, atarraxando ou desatarraxando este conjunto, até possibilitar um perfeito tangenciamento da ponta da agulha com o diâmetro menor do expansor;

(e) para cada verificação do tangenciamento, deverá ser colocado o conjunto da forqueta e acioná-lo para frente;

(f) colocar a mola e parafuso tampão da válvula de combustível.

c. Do sistema de ignição

(1) Colocar o punho com circuito centelhador no cano e fixá-lo, atarraxando a porca anterior do sobre-cano.

(2) Encaixar o tubo porta-pilhas em seu alojamento no corpo da válvula de combustível.

(3) Encaixar a cabeça de ignição através do eixo do cano.

(4) Fixar o tubo porta-pilhas atarraxando-o na cabeça de ignição.

(5) Fixar a cabeça de ignição através de sua porca de retenção.

(6) Atarraxar a alavanca de combustível com sua borracha protetora no conjunto da forqueta. A parte superior da borracha protetora deverá cobrir a porca de retenção do conjunto da forqueta.

(7) Fixar o terminal elétrico na cabeça de ignição através de seus dois parafusos.

(8) Atarraxar a chave "Allem" em seu alojamento no porta-agulhas sobressalente.

OBSERVAÇÕES:

(1) As peças não mencionadas serão desmontadas e manutenidas por escalão superior.

(2) Após 50 missões de tiro deverá ser realizada uma inspeção rigorosa em todo o armazenamento, principalmente no regulador de pressão, procedendo da forma que se segue.

(a) Retirar o bujão de enchimento do reservatório de combustível.

(b) Adaptar um manômetro (Fig 2–17).

(c) Com os reservatórios de combustível cheios de água limpa, libere a pressão para aqueles reservatórios.

(d) O manômetro deverá acusar uma pressão em torno de 25 kg/cm²; caso isso não ocorra, recolher o armamento para o escalão de manutenção superior.

(e) Aproveitar este teste para verificar a presença de vazamentos em todos os sistemas.
Fig 2-17. Adaptação do manômetro

ARTIGO IV

INCIDENTES DE TIRO MAIS COMUNS

2-11. PROCEDIMENTOS

<table>
<thead>
<tr>
<th>INCIDENTES</th>
<th>CAUSA PROVÁVEL</th>
<th>COMO SANAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Pequeno alcance</td>
<td>(1) O jato de combustível sai em ângulo ou muito disperso.</td>
<td>(1) Pressionar a alavanca de combustível totalmente à frente.</td>
</tr>
<tr>
<td></td>
<td>(1) A alavanca da válvula de combustível não foi levada completamente à frente.</td>
<td></td>
</tr>
<tr>
<td>INCIDENTES</td>
<td>CAUSA PROVÁVEL</td>
<td>COMO SANAR</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>(2) Queda brusca do alcance durante o tiro.</td>
<td>(2) Montagem imprópria da válvula ou falta de regulação da agulha.</td>
<td>(2) Desmontar a válvula de combustível, limpá-la, remontá-la e regular a agulha.</td>
</tr>
<tr>
<td>(3) Aicance cada vez mais curto em cada tiro.</td>
<td>(1) A válvula do reservatório de pressão não está completamente aberta. (2) Regulador de pressão desregulado.</td>
<td>(1) Abrir totalmente a válvula do reservatório de pressão. (2) Testar o regulador de pressão, regulando-o se for o caso.</td>
</tr>
<tr>
<td>(4) Curto alcance mas com tempo de duração do tiro superior ao previsto. (9 a 10 seg)</td>
<td>(1) O reservatório de alta pressão não foi completamente carregado. (2) Vazamento nas junções do sistema de pressão.</td>
<td>(1) Assegurar-se que o reservatório está carregado, com no mínimo 120 kg/cm², de preferência 200 kg/cm². (2) Verificar se há vazamento e, caso positivo, reapertar as conexões.</td>
</tr>
<tr>
<td>b. Falha na válvula de combustível – A válvula não fecha quando se libera a alavanca.</td>
<td>(1) Combustível seco ou outro corpo estranho na tubulação.</td>
<td>(1) Desmontar e limpar.</td>
</tr>
<tr>
<td></td>
<td>(1) Pode haver corpo estranho no tubo.</td>
<td>(1) Puxar a alavanca para a retaguarda para forçar a haste da válvula para a frente. Se não resolver, desmontar e limpar. (2) Se o tubo tiver mossas, substituí-lo como uma unidade. (3) Regular.</td>
</tr>
<tr>
<td></td>
<td>(2) O tubo pode ter mossas.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) Falta de regulação na agulha.</td>
<td></td>
</tr>
<tr>
<td>INCIDENTES</td>
<td>CAUSA PROVÁVEL</td>
<td>COMO SANAR</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>c. Vazamento de combustível.</td>
<td>(1) Anel de vedação da forqueta avariado ou gasto.</td>
<td>(1) Substituir o anel de vedação.</td>
</tr>
<tr>
<td></td>
<td>(2) Junta esférica da forqueta avariada.</td>
<td>(2) Instalar um novo conjunto da forqueta.</td>
</tr>
<tr>
<td></td>
<td>(3) Conexão da mangueira de combustível com rosas defeituosas.</td>
<td>(3) Substituir a parte roscada.</td>
</tr>
<tr>
<td></td>
<td>(4) Sujeira ou corpo estranho na sede ou nas rosas.</td>
<td>(4) Limpar as sedes e as rosas e atarraxar novamente. Se o vazamento é</td>
</tr>
<tr>
<td></td>
<td></td>
<td>entre o engate do reservatório e seu conector ou entre a mangueira e o</td>
</tr>
<tr>
<td></td>
<td></td>
<td>corpo da válvula, aplicar uma fita anti-aderente antes de atarraxá-las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>novamente. Apertar com chave apropriada.</td>
</tr>
<tr>
<td></td>
<td>(5) Vazamento no expansor.</td>
<td>(5) Ajustar agulha. Se o vazamento persistir, usar material abrasivo para</td>
</tr>
<tr>
<td></td>
<td></td>
<td>polimento da agulha e da sua sede. Retirar o material, montar e regular</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a agulha novamente. Se continuar vazando, substituir a agulha e o cano</td>
</tr>
<tr>
<td></td>
<td></td>
<td>como uma única peça.</td>
</tr>
<tr>
<td></td>
<td>(6) Mangueira gasta.</td>
<td>(6) Substituir a mangueira.</td>
</tr>
<tr>
<td></td>
<td>(7) Vazamento no engate do reservatório.</td>
<td>(7) Retirar e substituir o anel de vedação se ele estiver danificado. Se o</td>
</tr>
<tr>
<td></td>
<td></td>
<td>terminal da mangueira estiver com defeito, consertá-lo. Se não for</td>
</tr>
<tr>
<td></td>
<td></td>
<td>possível, substituir toda a mangueira.</td>
</tr>
</tbody>
</table>
d. Rompimento da válvula de segurança
 (1) Válvula de segurança defeituosa.
 (2) Regulador de pressão defeituoso.
 (1) Substituir por uma nova válvula.
 (2) Se a válvula substituta também se romper, testar o regulador de pressão. Se estiver desregulado, regulá-lo. Se estiver defeituoso, substituí-lo.

e. Transportador desconfortável
 (1) Falta de ajustagem dos suspensórios.
 (2) Cordões defeituosos.
 (1) Ajustá-los.
 (2) Substituí-los.

f. Falha de ignição
 (1) Pilhas fracas.
 (2) Afastamento anormal das agulhas.
 (3) Formação de dieletro (fuligem) nas agulhas.
 (4) Falta de contato da fonte de alimentação com o circuito.
 (5) Defeito do circuito centrélhador.
 (1) Trocá-las.
 (2) Regulá-los com a abertura de 3,5 mm.
 (3) Limpar as agulhas com escova própria.
 (4) Verificar e refazer o contato, apertando o tubo porta-pilhas no contato anterior. Atarraxar o contato posterior até as lâmpadas acenderem, uma vez pressionado o interruptor.
 (5) Recolher o tubo-arma para a manutenção.

PRECAUÇÕES — Antes de levar a efeito qualquer reparo no lança-chamas, LIBERAR AS PRESSÕES.
CAPÍTULO 3
INSTRUÇÃO DO ATIRADOR

ARTIGO I
GENERALIDADES

3-1. INTRODUÇÃO

a. O uso eficaz do Lança-Chamas Portátil LC T1 M1, apesar de sua simplicidade, só poderá ser obtido mediante uma assídua prática por parte do atirador.

b. O atirador deverá ter um conhecimento geral do lança-chamas, seu funcionamento, procedimentos de manutenção e conservação, precauções e regras de segurança, antes, durante e após os disparos.

c. O atirador deverá praticar o tiro, sob variadas condições de vento, alcance e terreno.

3-2. SELEÇÃO DOS ATIRADORES DE LANÇA-CHAMAS

A operação do lança-chamas é relativamente simples do ponto de vista técnico, mas, para ser eficaz no combate, exige dos atiradores determinadas qualidades físicas, intelectuais e morais.

a. Qualidades físicas — Para utilizar perfeitamente sua arma, o atirador deverá:

 (1) ser forte (a arma é relativamente pesada);
 (2) ser resistente (o atirador deverá em algumas ocasiões, caminhar longas distâncias antes de utilizar sua arma);
 (3) ser ágil (para se aproximar até a posição de tiro, será necessário, às vezes, superar diversos tipos de obstáculos);
 (4) ter bons reflexos.
b. Qualidades intelectuais

(1) O atirador deverá possuir um nível intelectual suficiente, que lhe permita assimilar facilmente, todos os conhecimentos técnicos concernentes ao funcionamento da arma, recarregamento, preparação de combustível, etc.

(2) Deve ser suficientemente inteligente, pois normalmente estará só no terreno por ocasião do disparo, e deverá ser capaz de tomar a iniciativa, particularmente na mudança da direção de tiro, se um objetivo mais importante for revelado inopinadamente.

c. Qualidades morais – Mais importante do que as qualidades físicas e intelectuais (citadas), o futuro atirador deverá ser escolhido em função de qualidades morais essenciais:

(1) sangue frio;
(2) audácia;
(3) espírito de sacrifício.

ARTIGO II
TÉCNICAS DE TIRO

3-3. ALCANÇES

O atirador deverá aprender a avaliar distâncias pela prática freqüente e sob várias condições. Deverá ser treinado para se aproximar tanto quanto possível do alvo e atirar a curta distância, a fim de obter os melhores resultados. O alcance pode variar de acordo com a topografia, vegetação, combustível utilizado, pressão, direção e velocidade do vento.

a. Tiro a curta distância

(1) Efeitos – A uma distância de 30 metros, quase todo o combustível espessado inflamado pode ser disparado em grande velocidade diretamente através de seteiras ou aberturas do alvo, causando o máximo de baixas e danos.

(2) Proteção – Precauções devem ser tomadas para prevenir baixas no próprio atirador ou em pessoal amigo, tendo em mente possíveis ricochetes do combustível inflamado. Se o alvo inclui uma grande parede vertical em ângulo reto em relação ao atirador ou pessoal amigo, o tiro não deverá ser executado se a distância for inferior a sete metros. Mesmo procedimento a distância mínima de tiro deverá ser observada contra pequenas aberturas de parapeito de espaldaço ou casamata.

b. Influência da topografia, vegetação e combustível utilizado – Os lançachamas portáteis podem ser utilizados em quase todos os terrenos, desde que os operadores possam transportá-los. Os terrenos planos ou de pouca inclinação permitem o tiro a maior distância (Fig 3–1), em contraposição aos terrenos irregulares
Fig 3–1. Tiro em terreno plano

(Fig 3–2). A mata densa ou floresta, reduz a metade o alcance do lança-chamas. Assim, para o tiro com combustíveis espessados em que o alcance máximo em campo aberto atinge cerca de 50 metros, em florestas, o alcance cai para cerca de 25 metros, o mesmo ocorrendo com o tiro utilizando-se combustíveis líquidos, onde seu alcance é reduzido de 25 para cerca de 15 metros.

Fig 3–2. Tiro em terreno irregular
c. Alcances ineficazes — Embora a chama possa alcançar distâncias maiores do que as estabelecidas no item anterior, esses alcances podem tornar-se inúteis por causa do seu abruto ângulo descendente e porque grande porção do combustível é queimado antes de alcançar o alvo. Uma exceção em que os tiros a maiores distâncias podem ser eficazes a despeito dessas desvantagens, é a situação em que se deseja que a chama atinja uma área onde se suspeita de atividade do inimigo, afim de intimidá-lo e obrigá-lo a descobrir-se (Fig 3-3).

![Fig 3-3. Tiro na posição inimiga suspeita](image)

d. Influência do vento (direção e velocidade)

(1) Os ventos “de trás” (“seguido”, “amigo”, “seis horas”), fracos, são os mais favoráveis para o emprego dos lança-chamas, permitindo pontaria mais precisa e um alcance mais eficiente.

(2) Os ventos “de frente” (“inimigo”, “doze horas”), fortes (mais de 8 km/h), tendem a fracionar o jato inflamado antes que este atinja o alvo, tornando-se ainda perigoso para o próprio atirador, que poderá receber sobre si o jato inflamado.

(3) Os ventos “de flanco”, fortes, dificultam ainda mais os tiros, pois além de fracionarem os jatos, provocam o seu desvio, obrigando o atirador a compensar a pontaria.

3-4. **RAJADAS DE TIRO**

O tiro poderá ser executado em rajadas contínuas ou intermitentes, mas tendo sempre em mente que o tempo total de tiro se situa em torno de 10 segundos, não incluindo o tempo entre as rajadas.
a. Rajadas transversais — Com o combustível espessado, o lança-chamas pode- rá ser utilizado transversalmente, assegurando uma área de cobertura maior, forçan- do o inimigo a sair de sua posição defensiva. Este método é eficaz para inimigos situados na orla de florestas ou em região de densas folhagens.

b. Rajadas de trajetória alta — Faz com que o combustível espessado caia sob a forma de bolas incendiárias sobre o inimigo. Este método é eficaz para curvas reversas, muros, construções baixas e que não podem ser penetradas.

3.5. PONTARIA

a. Visada

(1) Não há aparelho de pontaria no tubo-arma por causa da distância em que se atira, da variedade do combustível empregado e dos efeitos do vento. A arma deve ser apontada como se faz com uma mangueira de incêndio.

(2) Para determinados tipos de alvo, é aconselhável que o jato incendiário atinja inicialmente o seu ápice e em seguida, o alvo propriamente dito. Uma vez atingido pelo alto com rajadas, o atirador terá certeza de estar dentro do alcance.

(3) Logo que o alvo tenha sido atingido, o atirador deve lançar suficiente fogo para executar a missão dentro das limitações da arma.

(4) Deve-se atirar de uma posição fixa, pois o movimento diminui a precisão e poderá ocorrer a que fogo e fumaça venham em sua direção, caso esteja avançando.

(5) Quando o alvo for uma posição fortificada, deve-se dirigir a chama para as aberturas (vigias, seteiras, entradas de ventilação, portinholas, passagens, etc...). As chamas, quando no interior, darão o efeito desejado, mas disparadas externamente, têm pouco efeito contra pessoa abrigado.

(6) As influências dos combustíveis na pontaria são os que adiante se seguem.

 (a) Combustível espessado — Quando se atira à distância máxima ou próximo de 40 a 50 metros, a rajada de combustível espessado leva 2 a 3 segundos em queima (de um tempo total de cerca de 10 segundos), atravessando o ar até a área do alvo. Por essa razão, rajadas curtas para grandes distâncias podem resultar em insucesso. A perícia na pontaria é particularmente importante quando se atira com combustível espessado.

 (b) Combustível líquido — Empregando-se este combustível, os melhores resultados podem ser obtidos, colocando-se a chama diretamente no alvo.

 (c) Molhar o alvo — Quando o combustível líquido é empregado, pode ser desejável, em certas situações, molhar o alvo com o combustível e inflamá-lo depois. Para isso faz-se um ou dois disparos sem comprimir o gatilho, em seguida atira-se com um jato inflamado.

b. Tiro de regulação — Visa dirigir o combustível em chama para o alvo comprimindo a alavanca da válvula firmemente, com a mão direta, mantendo o gatilho
acionado durante a rajada. Quando o tiro for feito com combustível espessado, colocar a cabeça ligeiramente para um lado, afim de observar a trajetória da rajada e poder corrigir a pontaria antes do próximo tiro.

ARTIGO III

POSIÇÕES DE TIRO

3-6. GENERALIDADES

A arma poderá ser usada em qualquer posição, desde que obedeça às seguintes condições:

a. não inclinar os reservatórios de combustível, procurando mantê-los na vertical e no mesmo nível, caso contrário, somente parte do combustível será utilizado;

b. deverá haver estabilidade para diminuir o recuo da arma durante o tiro;

c. as cobertas e abrigos, sempre que possível, deverão ser aproveitadas para uma missão de tiro;

d. As posições de tiro com o lança-chamas portátil são semelhantes às posições de tiro com o fuzil.

3-7. POSIÇÕES

a. De pé (Fig 3-4). — O lança-chamas portátil é mais empregado com o atirador de pé. Para tal, o atirador deverá:

 (1) segurar o punho da alavanca da válvula de combustível com a mão direita e o punho do gatilho com a mão esquerda;

 (2) postar-se de frente para o alvo, fazer direita volver e colocar o pé esquerdo na direção do alvo, de modo que os pés fiquem confortáveis e convenientemente separados (cerca de 30 cm);

 (3) por último, inclinar-se para a frente ligeiramente, mantendo o tubo-arma bem firme contra o seu lado direito para apoiá-lo e absorver seu recuo.

b. De joelhos (Fig 3-5) — Esta posição é utilizada quando se tem certeza de não haver movimento do alvo e para proporcionar maior proteção ao atirador. Para tal, o atirador deverá:

 (1) partindo da posição de pé, descrita no item anterior, colocar o joelho direito no solo, mantendo a perna esquerda flexionada e o pé esquerdo na direção do alvo;

 (2) segurar bem o tubo-arma para evitar o recuo e levantar a cabeça para ver o alvo.

c. Deitado (Fig 3-6) — Esta posição é utilizada para se obter o maior proveito de pequenas coberturas. Para tomar tal posição, o atirador deverá segurar o
Fig 3-4. Atirador na posição de pé

tubo-arma do mesmo modo da posição de pé e deitar com a cabeça voltada para o alvo, apoiando os cotovelos no solo para dar maior estabilidade e reduzir o recuo. Os reservatórios de combustível deverão ser mantidos no mesmo nível.

ARTIGO IV
ABORDAGEM DO ALVO

3-8. ALVOS
a. Tropa
(1) Contra elementos em progressão, as chamas devem ser dirigidas de modo a atacar o pessoal diretamente. Quando empregado a céu aberto, o efeito letal
Fig 3-5. Atirador na posição de joelhos

Fig 3-6. Atirador na posição deitado
produzido pelas chamas é pouco eficaz, entretanto, o calor e a fumaça intensos, cegarão o atacante, temporariamente, dificultando a sua progressão e a realização de tiros precisos.

(2) Contra elementos protegidos apenas por cobertura natural, pode ser empregados os procedimentos que se seguem:
 (a) dirigir as chamas para a orla ou abertura próxima da coberta para que se propague dentro da posição;
 (b) projetar as chamas em ângulo elevado a fim de que possa atingir a parte posterior da coberta.

b. Instalações — Contra instalações do tipo depósito de suprimentos, as chamas devem ser dirigidas contra a parte voltada para o vento. Havendo disponibilidade de combustível, é desejável impregnar, preliminarmente, toda a instalação ou parte dela, de combustível, para em seguida realizar o tiro.

c. Fortificações
 (1) Abrigos individuais — O processo mais eficiente de emprego das chamas contra as trincheiras e abrigos individuais, é cobrir toda a área com rajadas baixas e sucessivas. As chamas podem também ser dirigidas para dentro da área, bastando para isso elevar o tubo, deixando as bolas incendiárias caírem dentro dos espaldões e/ou abrigos.

 (2) Posições fortificadas — Raras vezes serão possíveis projetar as chamas para o interior de uma posição fortificada. Em consequência, devem ser produzidas chamas suficientes a fim de asfixiar o pessoal no interior da posição.

d. Localidades — No combate em pequenas ou grandes cidades, o fuzileiro, normalmente, assinala os alvos para o lança-chamas.

 (1) Contra edifícios (fortificados ou não) as chamas devem ser dirigidas para o interior ou para qualquer parte inflamável do lado de fora. Sempre que possível, outras armas serão utilizadas para se conseguir aberturas nas paredes, a fim de possibilitar a passagem das chamas.

 (2) Quando se tratar de pavimentos superiores, especial atenção deve ser dada à direção dos ventos, particularmente com vistas a possíveis mudanças.

ARTIGO V

ADESTRAMENTO

3-9. EMPREGO DE ÁGUA NO ADESTRAMENTO

A água poderá ser utilizada em lugar do combustível para o adestramento elemento do atirador. A água sob pressão poderá causar sérios danos a uma pessoa a curta distância (até 10 m). Depois de praticar com água, o tubo-arma deve ser desmontado, limpo, seco e lubrificado. O uso da água auxilia no adestramento, mas não proporciona a impressão correta das características do jato de combustível em chamas.
3-10. EMPREGO DO COMBUSTÍVEL

Quando empregar combustível no adestramento, selecionar previamente uma área para exercício de tiro de no mínimo, 100 metros para o alcance e de 80 metros para a dispersão, isenta de mato seco ou outro material combustível. Auxiliares e observadores deverão ficar a considerável distância atrás do atirador por causa do perigo das mudanças de direção do vento.

NOTA — Um equipamento de combate a incêndios deverá estar sempre a postos.

ARTIGO VI
INSTRUÇÕES PARA OPERAÇÃO

3-11. OPERAÇÕES PRELIMINARES

a. Carregar o reservatório de pressão com ar comprimido ou nitrogênio.

b. Adaptar o conjunto tubo-arma ao conector.

c. Realizar o teste da fonte de alimentação, comprimindo o interruptor (Fig 3-7 C) e a lâmpada de 12V acenderá (Fig 3-7 A), indicando que a fonte está

![Fig 3-7. Terminal do tubo com o circuito de testes](image)
em condições de uso (com 11,7V ou mais). Nesta situação, a arma é capaz de cumprir 500 missões de tiro. A lâmpada de referência (REF) acesa (Fig 3-7 B), indica que a fonte está corretamente colocada (sem inversão de pilhas). Quando apagada, indica erro na colocação das pilhas, ou ainda, que a voltagem caiu para menos de 10,7V e deve ser substituída na primeira oportunidade.

d. Encher os reservatórios de combustível.

e. O atirador colocará em suas costas, o conjunto de reservatórios, ajustando e afivelando seus suspensórios.

3-12. OPERAÇÕES PARA O TIRO

a. Abrir a válvula do reservatório de pressão — Girando o volante da válvula no sentido anti-horário (Fig 3-8). Feito isto, o ar comprimido ou nitrogênio passará através do regulador de pressão para o interior dos reservatórios de combustível, o que originará um ruído característico que o operador aguarda que cesse afim de prosseguir nas demais operações.

![Image](image_url)

Fig 3-8. Volante da válvula de alta pressão

b. Acionar o gatilho (Fig 2-10) — Após ter agido no registro de segurança, colocando-o na posição “F”, acionar a tecla do gatilho que completará o circuito elétrico, estabelecendo o arco voltaico de imediato entre as agulhas da cabeça de ignição, provocando o centelhamento. Soltando-se a tecla, esta, por ação da própria mola, volta à posição inicial, abrindo o circuito.
c. Acionar a alavanca de combustível (Fig 2–10 C) — Pressionando-se a alavanca para a frente o combustível é ejetado do tubo-arma passando pelo arco voltaico, ignizando-o na câmara de combustão e através da pressão, o combustível inflamado é impulsionado até o alvo.

3-13. AÇÕES A REALIZAR

a. Antes do tiro — Observar o prescrito no parágrafo 3-11, do artigo VI deste capítulo — Operações Preliminares.

 (1) Transporte do conjunto de reservatórios — Os reservatórios são apoiados às costas do atirador e firmados a elas por dois suspensórios e um cinto, que podem ser ajustados pelo atirador. O conjunto deverá ficar ajustado para que não saia da posição, mesmo que o atirador mude rapidamente de direção (Fig 3–9 A).

 (2) Transporte do sistema tubo-arma (Fig 3–9 B).

Fig 3–9. Transporte do lança-chamas
(a) Transportar o tubo-arma com a mangueira no lado direito.
(b) Segurar o punho da alavanca da válvula de combustível com a mão direita e o punho do gatilho com a mão esquerda, tendo o cuidado de não acionar os controles até o momento do tiro.
(c) Manter o tubo-arma apontado para onde não haja pessoal amigo.
(d) Usar luvas, se disponíveis.

b. Durante o tiro
 (1) Observar o prescrito no parágrafo 3-12 do artigo VI deste capítulo — Operações para o tiro.
 (2) Observar o prescrito no Artigo II, Técnicas de Tiro e Artigo III — Posições de tiro, deste capítulo.

c. Após o tiro — As etapas que se seguem devem ser executadas após o cumprimento de uma missão de tiro.
 (1) Como a arma pode esgotar dois conjuntos de reservatórios de combustível com o mesmo reservatório de propelente, o atirador deverá fechar a válvula do reservatório de alta pressão, girando o volante no sentido horário (para conservar a pressão remanescente) logo após o esgotamento do combustível. Isto só será válido quando o tiro anterior tiver sido feito em rajada única. Lembrar que, apesar da válvula do reservatório de alta pressão estar fechada, os cilindros de combustível estão sob pressão, portanto, antes de abrir o bujão de enchimento, escoar toda a pressão daqueles cilindros, comprimindo a alavanca de combustível até haver o equilíbrio e abrir a válvula de drenagem do bujão de carregamento (Fig 2–6 G).
 (2) Se nenhum tiro adicional for executado antes do reabastecimento, executar as operações que se seguem.
 (a) Colocar o registro de segurança na posição “S”.
 (b) Abrir a válvula do reservatório de alta pressão, girando o volante sentido anti-horário.
 (c) Apontar o tubo-arma para onde não haja pessoal amigo e descarregar todo combustível e pressão remanescente dos reservatórios, pressionando a alavanca para a frente, até não haver mais descarga. O gatilho não deverá ser pressionado durante esta operação.
 (d) Fechar a válvula do reservatório de alta pressão para evitar a entrada de corpos estranhos no sistema de pressão.
 (e) Retirar o conjunto de reservatórios das costas, se possível auxiliado por um companheiro. Evitar deixar cair o equipamento no solo a fim de não avariá-lo.
 (f) Retirar as pilhas do tubo porta-pilhas.
 (g) Inspeccionar, limpar e fazer a manutenção necessária.
 (h) Após estas operações colocar a arma na caixa de embalagem ou prepará-la para nova missão.
CAPÍTULO 4

SEGURANÇA DO TIRO

4-1. INTRODUÇÃO

Antes de se utilizar o lança-chamas, todas as precauções devem ser tomadas para evitar acidentes com o pessoal ou danos nas propriedades. Todo pessoal deve estar familiarizado com o equipamento que irá manusear e com as medidas de segurança em vigor.

4-2. NORMAS DE SEGURANÇA

a. Para a maneabilidade e o tiro de instrução, deve estar disponível uma área para exercício livre de vegetação e de outros materiais inflamáveis. Essa área, para o caso do lança-chamas portátil, deve ter, no mínimo, 110 m de comprimento por 100 m de largura sendo que, na fase de adestramento qualquer alcance pode ser utilizado.

b. Os lança-chamas portáteis não deverão ser acionados na direção contrária ao vento, especialmente com velocidade superior a 8 km por hora quando carregados com combustível não condensado. Não deverão, também, serem acionados contra terreno abrupto ou obstáculos — árvores, edifícios, etc — a uma distância inferior a 6 m do atirador e a 15 m de qualquer outro elemento.

c. Uma viatura de emergência disposto de equipamento de primeiros socorros para queimaduras, com pessoal bem treinado devem estar disponíveis nas proximidades do local do exercício. Deve-se interromper o tiro quando essa viatura de emergência deixar o local da instrução.

d. Durante os tiros de instrução, dois extintores de incêndio deverão ser colocados cerca de 10 m à retaguarda do lança-chamas, durante os disparos. Cobertores umedecidos ou à prova de fogo, deverão suplementar os extintores de incêndio.
e. Cuidados maiores deverão ser tomados com vista a confecção dos alvos para o tiro a fim de prevenir-se contra possíveis acidentes.

f. Deverão ser colocados sinais proibindo o pessoal de fumar num raio de 50 m de qualquer lança-chama ou do local de abastecimento.

g. O instrutor deverá estar totalmente familiarizado com o funcionamento da arma, processos de abastecimento e primeiros socorros.

h. As medidas e normas existentes, no tocante ao uso de combustíveis e sobre compressão, deverão ser obedecidas.

i. Antes do abastecimento do combustível, carregamento da compressão e disparo, o instrutor deverá inspecionar todo o equipamento.

j. Oxigênio e gases inflamáveis nunca deverão ser utilizados para carregar o reservatório de alta pressão.

l. Na linha de tiro deverá ter um instrutor disponível para auxiliar e orientar os atiradores durante os tiros de instrução.

m. Um raio de 10 m ao lado ou à retaguarda do lança-chamas, considerado área de perigo, deve estar completamente desobstruída.

n. A depressão máxima durante o tiro não deverá exceder 20 graus.

o. Quando a compressão restante tiver que ser liberada, deve ser feito longe de fogo ou de combustível em queima sobre o solo.
CAPÍTULO 5
EMPREGO TÁTICO

ARTIGO I
GENERALIDADES

5-1. RESPONSABILIDADE DO OFICIAL DE GUERRA QBN

O oficial de guerra QBN é o responsável pelo assessoramento no planejamento para o emprego e utilização dos lança-chamas em campanha.

ARTIGO II

EMPREGO DO LANÇA-CHAMAS LC T1 M1 NAS OPERAÇÕES OFENSIVAS

5-2. GENERALIDADES

Os lança-chamas possuem muitas qualidades como arma de assalto ofensiva. Quando combinado com a infantaria, carros de combate e apoio de fogos, o lança-chamas contribui de forma apreciável para o êxito da missão. As limitações do lança-chamas portátil relacionam-se principalmente com o alcance, capacidade de combustível e peso.

5-3. PLANEJAMENTO DO ATAQUE

a. O planejamento deve ser o mais simples e direto possível.

b. Organização
 (1) A base para o emprego dos lança-chamas, encontra-se inserida no Artigo II do Capítulo 1 deste manual.
(2) Os lança-chamas devem ser fornecidos aos elementos de fuzileiros como arma de assalto.

(3) Poderá ser aumentado o número de atiradores de lança-chamas a nível fração, caso a missão venha a exigir.

(4) A coordenação das operações que envolvam o lança-chamas portátil é a nível subunidade.

(5) O recarregamento dos lança-chamas é realizado por meio das unidades de recarga (Fig 5-1) que são abastecidas dentro do fluxo normal de suprimento.

Fig 5-1. Unidade de recarga

c. Informações — Os aspectos referentes ao tamanho e à natureza do objetivo, ao terreno e à tenacidade e disposição do inimigo, são dados importantes para o planejamento.
d. Reconhecimento — O reconhecimento é uma etapa importante para um eficiente emprego dos lança-chamas. Nesta fase são executadas as ações que adiante se seguem.
 (1) Localizar o alvo e seus elementos de apoio.
 (2) Selecionar uma via de aproximação desenfiada.

e. Isolamento do alvo (Apoio de fogo)
 (1) Após o reconhecimento e a seleção do(s) alvo(s), torna-se necessário isolá-lo(s). Isto poderá ser executado utilizando-se uma cobertura fumígena, não devendo contudo, obscurecer a ponto de prejudicar a visão dos atiradores de lança-chamas.
 (2) Fogos de artilharia, morteiro e tiro de armas automáticas, poderão ser usados para neutralizar posições inimigas nos flancos, com a finalidade de proporcionar uma segurança no avanço dos atiradores de lança-chamas.

f. Quantidade de lança-chamas
 (1) O número de lança-chamas depende de uma série de fatores tais como tamanho e natureza do objetivo, terreno, condições físicas e morais do inimigo.
 (2) Deve ser evitado o emprego parcelado dos lança-chamas, pois, o inimigo deve ter a certeza de que será totalmente destruído, caso ofereça resistência ao ataque.

g. Recarregamento dos lança-chamas
 (1) A quantidade de combustível do lançachamas é limitada. Deverá haver um plano para o recarregamento, elaborado pelo comandante do Pelotão de Sapadores.
 (2) As unidades de recarga (Fig 5-1) vazias são levadas a nível unidade para o recarregamento, em particular, para o P Rem da unidade na ATC, onde o motorista da unidade móvel de recarregamento será o responsável pelo manuseio do equipamento de recarga.

5-4. ATAQUE

a. Os lança-chamas poderão participar do ataque das formas que se seguem.
 (1) Aproximando-se do alvo utilizando uma visibilidade reduzida por parte do inimigo, buscando maior supresa possível.
 (2) Movimentando-se sob a cobertura do apoio de fogo aproximado.
 (3) Acompanhando um pelotão, como parte integrante do elemento de assalto.

b. Conduta de ataque
 (1) Os atiradores dos lança-chamas deverão progredir numa via de acesso que lhes proporcione maior proteção bem como, deverão ser acompanhados por atiradores de armas portáteis que lhes proporcione segurança aproximada.
 (2) Os fusileiros deverão estar em condições de avançarem sobre o inimigo, tão logo a ação dos lança-chamas termine.
c. Controle — Será mais eficiente quando:
 (1) os atiradores de lança-chamas forem treinados em conjunto com o elemento apoiado;
 (2) quando a ação for precedida de um reconhecimento e de planejamento detalhado.

d. Reorganização — Os atiradores de lança-chamas deverão permanecer na área do objetivo com a unidade apoiada, afim de participar na reorganização e consolidação. Nesta oportunidade, as unidades de recarga vazias deverão ser substituídas imediatamente para possibilitar o prosseguimento do apoio no ataque.

ARTIGO III
EMPREGO DO LANÇA-CHAMAS LC T1 M1 NAS OPERAÇÕES DEFENSIVAS

5-5. GENERALIDADES

a. Embora o lança-chamas seja uma arma de grandes qualidades ofensivas, poderá eventualmente, cumprir missões defensivas.

b. O lança-chamas é particularmente eficiente quando empregado no estágio final do assalto inimigo, limitando a penetração, porém, seu curto alcance torna esta missão muito limitada.

c. Os lança-chamas são normalmente empregados para reforçar ou suplementar outros fogos defensivos ou defender um pequeno setor não coberto por outras armas.

d. O combustível do lança-chamas flutua e queima na água, podendo desta forma, ser utilizado para impedir a travessia de inimigos a pé em cursos d’água.

5-6. PLANEJAMENTO

a. O recarregamento ou substituição das unidades de recarga vazias, deverá receber atenção especial durante o planejamento, a fim de assegurar um constante apoio dos lança-chamas na defesa.

b. Posições suplementares para os lança-chamas deverão receber especial atenção, a fim de proporcionar maior flexibilidade. A chama terá maior efeito quando utilizada contra um ataque emassado do inimigo.

c. Fogo em vegetação — Deve ser evitado, pois dificulta a defesa. Se houver necessidade de fogo deliberado, os seguintes fatores devem ser considerados:
 (1) perigo para as tropas e instalações amigas;
 (2) provável efeito nas operações inimigas;
 (3) efeito na observação amiga;
 (4) efeito nas futuras operações amigas.
CAPÍTULO 6
COMBUSTÍVEL, E UNIDADE MÓVEL DE CARREGAMENTO

ARTIGO I
COMBUSTÍVEL

6-1. GENERALIDADES

O lança-chamas é uma arma destinada especificamente ao lançamento de combustíveis denominados agentes químicos incendiários. Utilizados com a finalidade de destruir pela queima, desalojar o inimigo pela asfixia e principalmente, desmoralizar pela intensidade de calor.

6-2. TIPOS DE COMBUSTÍVEIS

a. Existem dois tipos de combustíveis que podem ser utilizados pela arma: combustíveis líquidos e combustíveis espessados.

b. A missão a desempenhar é fator essencial na escolha do tipo de combustível.

6-3. CARACTERÍSTICAS DOS COMBUSTÍVEIS

a. Combustível líquido

(1) É um líquido de baixa viscosidade e altamente inflamável, tem alcance menor (aproximadamente 30 m) e produz uma chama intensa (temperatura de 650º/750º C).

(2) É composto de uma mistura de gasolina com óleo combustível ou de lubrificação (APL, Óleo Diesel, SAE 10 – 30 – 90 e óleo queimado filtrado).

(3) Produz grandes efeitos fumígenos e desmoralizante sobre o pessoal.
b. Combustível espessado — É um líquido viscoso, também conhecido como "gasolina gelatinosa", altamente inflamável, produz uma chama estreita de grande alcance e pouca fumaça. Consiste da mistura gasolina com um espessador (GEL – 1 da CEV e o EC + 1 da Hydroar), que adere ao alvo queimando durante algum tempo sobre o mesmo,
ARTIGO II
UNIDADE MÓVEL DE CARREGAMENTO

6-4. CONSTITUIÇÃO (Fig 6–3)

A unidade móvel de carregamento, montada sobre reboque, contém todos os elementos necessários à manutenção de seus próprios elementos constitutivos, bem como dispõe dos meios para manutenção de campanha e reabastecimento do Lança-Chamas Portátil LC T1 M1 dentro das suas limitações de capacidade. É constituída basicamente dos componentes que adiante se seguem.

a. Reboque tipo militar para tracionamento em qualquer terreno.

b. Um compressor de alta pressão de três estágios (Fig 6–3 A).

c. Um motor estacionário de 6 HP de capacidade (Fig 6–3 B) movido à gasolina ou óleo diesel (opcional).

d. Um reservatório de combustível para lança-chamas com capacidade para 450 litros (Fig 6–3 C).

e. Dois cilindros para ar comprimido com capacidade para 4C litros e pressão de trabalho de 200 kgf/cm² (Fig 6–3 D).

f. Dois reservatórios, com capacidade para 20 litros cada, destinados ao reabastecimento de óleo lubrificante e combustível para o grupo motor-compressor.

Fig 6–3. Unidade móvel de carregamento
g. Painel de comando de manômetro para controle das pressões e registros que possibilitam a circulação do ar comprimido nas direções desejadas (cilindro de armazenamento, reservatório de combustível ou reservatório de alta pressão dos lanças-chamas), 5 mangueiras de carregamento munidas de engate rápido nas duas extremidades. (Fig 6-3 E).

h. Uma caixa de ferramentas e acessórios para reparos de 1º e de 2º escalões.

i. O equipamento está protegido por válvulas de segurança localizadas nos elementos que adiante se seguem.
 1) Reservatório de combustível.
 - Uma válvula de alívio
 - Uma válvula de arrebentamento.
 2) Compressores — Uma válvula de abertura, que se abre quando a pressão atinge 200 kgf/cm².

j. O equipamento possui, ainda, três filtros para desumidificar o ar admitido e uma válvula reguladora que reduz a pressão, qualquer se seja ela, até 200 kgf/cm², para a pressão operacional de 2 kgf/cm² no interior do reservatório de combustível.

l. A mangueira de combustível pode ser ligada ou desligada rapidamente da tubulação de combustível mediante engate rápido. É munida de válvula de esfera de abertura e fechamento simples e rápida para facilitar o escoamento do combustível.

m. Tanto as mangueiras de carregamento como a mangueira de combustível, dispõem de alojamento próprio para o transporte, sob o chassis do reboque.

6-5. OPERAÇÃO

Para operar a unidade móvel deve ser observada sequência abaixo descrita.

a. Verificar o nível do óleo do grupo motor-compressor, recompletando ou trocando se for o caso.

b. Abastecer o motor de combustível.

c. Verificar se todos os registros estão fechados, inclusive os dos cilindros de armazenamento.

d. Abrir a válvula de drenagem do compressor.

e. Dar partida no motor.

f. Se desejar carregar os cilindros de armazenamento, agir do seguinte modo:
 1) fechar a válvula de drenagem do compressor;
 2) abrir uma ou ambas as válvulas dos cilindros de armazenagem (caso queira carregar um ou os dois);
 3) abrir os registros das extremidades do painel de controle (os dois ou os quatro);
(4) quando atingir a pressão desejada, desligar o motor e fechar todos os registros;
(5) abrir a válvula de drenagem do compressor.

g. Se desejar carregar diretamente os cilindros de alta pressão, observar as instruções que se seguem.
(1) Atararaxar os engates rápidos das mangueiras de carregamento às saídas dos cinco registros respectivos (Fig 6–3 E).
(2) Atararaxar as outras extremidades das mangueiras às válvulas de carregamento dos cilindros de alta pressão.
(3) Abrir os cinco registros onde as mangueiras foram ligadas.
(4) Se desejar acompanhar o andamento da pressão pelos manômetros da unidade móvel, abrir os quatro registros das extremidades do painel de controle; se não o desejar, adaptar um manômetro à saída de um dos cilindros e abrir a válvula desse cilindro.
(5) Quando atingir a pressão desejada, desligar o motor.
(6) Abrir a válvula de drenagem do compressor.
(7) Se usar manômetro no cilindro de alta pressão, fechar a válvula desse cilindro, esgotar a pressão do manômetro e desatararaxar as mangueiras de carregamento. Guardá-las no lugar para isso determinado.
CAPÍTULO 7
PROCEDIMENTOS ADMINISTRATIVOS

7-1. GENERALIDADES.

a. O lança-chamas e acessórios são fornecidos através dos órgãos competentes, subordinados ao DMB em caixa de madeira com aproximadamente 0,85 x 0,56 x 0,24 m.

7-2. RECEBIMENTO DO MATERIAL

Para o recebimento do lança-chamas devem ser observadas os procedimentos que adiante se seguem.

a. Retirar o equipamento da embalagem (Fig 7-1).

b. Retirar os sobressalentes, a lista de ferramentas e os demais componentes da caixa de embalagem (Fig 7-2 e 7-3).

c. Conferir o conteúdo da caixa com a lista encontrada em seu interior.

d. Inspeccionar todas as peças cuidadosamente para verificar se as ajustagens estão corretas e em boas condições.

e. Desamarrar a mola da válvula do cano e instalá-la no tubo arma. A mola é embalada e expedida fora do sistema do corpo da válvula afim de preservar sua carga no limite máximo, durante o tempo de armazenagem (Fig 7-4).

f. Ajustar o regulador de pressão de acordo com as instruções. O regulador de pressão é ajustado a zero a fim de evitar avarias no diafragma durante o armazenamento e expedição (Fig 7-5).

g. Colocar as pilhas (Fig 7-6 A) no tubo porta-pilhas (Fig 7-6 B) e testar o circuito elétrico acionando o gatilho. O arco voltaico deve estabelecer-se de imediato, entre as agulhas com o seu ruído característico.
Fig 7–1. Caixa para armazenamento

Fig 7–2. Estojo de ferramentas
Fig 7–3. Sobressalentes

Fig 7–4. Mola da válvula do cano
Fig 7-5. Regulador de pressão

Fig 7-6. Tubo-arma
OBSERVAÇÕES –

(1) Antes de empregar o lança-chamas em uma missão, testá-lo realizando o tiro.

(2) Conservar a embalagem do equipamento para guardá-lo quando não estiver em uso.

(3) A mesma sequência de operações deverá ser observada quando se tratar do recebimento de equipamento usado.

7-3. ARMAZENAGEM

a. Os lança-chamas devem ser acondicionados nas respectivas caixas e armazenados em local seco e fresco, ao abrigo do sol. É proibido empilhar as caixas para evitar deformações no material.

b. Como existem diversas partes de borracha, torna-se indispensável dar a esse material o necessário trato para evitar desgastes prematuros. Essas partes devem ser limpas e polvilhadas com talco neutro.

c. Se o lança-chamas for molhado, deverá ser realizada sua secagem com um pano e colocado ao ar livre, abrigado do sol para que seja realizada a posterior manutenção e armazenagem.

d. Se todo o conjunto for armazenado por muito tempo, todas as superfícies de metal expostas, inclusive da caixa de embalagem, devem ser cobertas por uma substância anti-ferrugem. Periodicamente deverá ser feita uma verificação do estado geral do equipamento.

e. Mesmo em campanha ou em exercício, não é permitido deixar a caixa de embalagem com o material diretamente sobre o chão ou exposto ao tempo. Deve-se guardá-la em barraca ou em outro abrigo.

f. Na limpeza do lança-chamas, é necessário todo cuidado com os componentes. Somente homens qualificados poderão desmontar o material para limpeza e armazenagem.

g. Antes de separar o sistema tubo arma do conjunto de reservatórios, liberar toda a pressão residual daquele conjunto.

h. Retirar a mola da válvula de seu alojamento no corpo da válvula e amarrá-la ao tubo-arma.

i. Ajustar o regulador de pressão para a pressão zero.

j. O tubo-arma é guardado com a mangueira de combustível em seu suporte.

l. Os cintos de lona da embalagem devem manter o conjunto de reservatórios firmemente preso.

m. Os sobressalentes e acessórios devem permanecer devidamente acondicionados.
ANEXO A

CONJUNTO DO TUBO-ARMA

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIÇÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bocal com câmara de combustão</td>
</tr>
<tr>
<td>2</td>
<td>Agulha de ignição</td>
</tr>
<tr>
<td>3</td>
<td>Parafuso da agulha</td>
</tr>
<tr>
<td>4</td>
<td>Terminal elétrico</td>
</tr>
<tr>
<td>5</td>
<td>Anel de vedação</td>
</tr>
<tr>
<td>6</td>
<td>Anel de vedação</td>
</tr>
<tr>
<td>7</td>
<td>Porca de retenção</td>
</tr>
<tr>
<td>8</td>
<td>Parafuso do terminal</td>
</tr>
<tr>
<td>9</td>
<td>Cabeça de ignição</td>
</tr>
<tr>
<td>10</td>
<td>Anel de vedação</td>
</tr>
<tr>
<td>11</td>
<td>Anel de trava do registro</td>
</tr>
<tr>
<td>12</td>
<td>Parafuso do gatilho</td>
</tr>
<tr>
<td>13</td>
<td>Tecla do gatilho</td>
</tr>
<tr>
<td>14</td>
<td>Esfera do registro do gatilho</td>
</tr>
<tr>
<td>15</td>
<td>Mola do registro de segurança</td>
</tr>
<tr>
<td>16</td>
<td>Parafuso do registro de segurança</td>
</tr>
<tr>
<td>17</td>
<td>Punho com circuito centelhador</td>
</tr>
<tr>
<td>18</td>
<td>Registro de segurança</td>
</tr>
<tr>
<td>19</td>
<td>Anel de vedação</td>
</tr>
<tr>
<td>20</td>
<td>Sobre-cano com porca</td>
</tr>
<tr>
<td>21</td>
<td>Contato anterior do porta-pilha</td>
</tr>
<tr>
<td>22</td>
<td>Anel de vedação</td>
</tr>
<tr>
<td>23</td>
<td>Mola do porta-pilha</td>
</tr>
</tbody>
</table>
ANEXO A

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIÇÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>Tubo porta-pilha</td>
</tr>
<tr>
<td>25</td>
<td>Cano</td>
</tr>
<tr>
<td>26</td>
<td>Anel de vedação</td>
</tr>
<tr>
<td>27</td>
<td>Corpo da válvula de combustível</td>
</tr>
<tr>
<td>28</td>
<td>Agulha da válvula de combustível</td>
</tr>
<tr>
<td>29</td>
<td>Pilha alcalina média</td>
</tr>
<tr>
<td>30</td>
<td>Anel de vedação</td>
</tr>
<tr>
<td>32</td>
<td>Contato posterior com circuito</td>
</tr>
<tr>
<td>33</td>
<td>Bloco da forqueta</td>
</tr>
<tr>
<td>34</td>
<td>Porca de travamento</td>
</tr>
<tr>
<td>35</td>
<td>Mola da válvula de combustível</td>
</tr>
<tr>
<td>36</td>
<td>Anel de vedação</td>
</tr>
<tr>
<td>37</td>
<td>Parafuso tampão</td>
</tr>
<tr>
<td>38</td>
<td>Parafuso com chave combinada</td>
</tr>
<tr>
<td>39</td>
<td>Mangueira de combustível</td>
</tr>
<tr>
<td>40</td>
<td>Forqueta</td>
</tr>
<tr>
<td>41</td>
<td>Pino da forqueta</td>
</tr>
<tr>
<td>42</td>
<td>Coifa superior</td>
</tr>
<tr>
<td>43</td>
<td>Haste da forqueta com junta esférica</td>
</tr>
<tr>
<td>44</td>
<td>Anel de vedação</td>
</tr>
<tr>
<td>45</td>
<td>Coifa inferior</td>
</tr>
<tr>
<td>46</td>
<td>Porca de retenção</td>
</tr>
<tr>
<td>47</td>
<td>Protetor de borracha</td>
</tr>
<tr>
<td>48</td>
<td>Alavanca de combustível</td>
</tr>
<tr>
<td>49</td>
<td>Escova de limpeza das agulhas</td>
</tr>
<tr>
<td></td>
<td>Pertence ao dispositivo de transporte ANEXO C</td>
</tr>
<tr>
<td>142</td>
<td>Bandoleira de lona</td>
</tr>
<tr>
<td>143</td>
<td>Anilho posterior</td>
</tr>
<tr>
<td>144</td>
<td>Contra-porca do anilho</td>
</tr>
<tr>
<td>145</td>
<td>Anilho anterior da bandoleira</td>
</tr>
</tbody>
</table>
Continuação do ANEXO A
ANEXO B
CONJUNTO DE RESERVATÓRIOS

<table>
<thead>
<tr>
<th>ÍTEM</th>
<th>DESCRIÇÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>Parafuso de fixação do volante</td>
</tr>
<tr>
<td>51</td>
<td>Mola de compressão do volante</td>
</tr>
<tr>
<td>52</td>
<td>Volante da válvula de alta pressão</td>
</tr>
<tr>
<td>53</td>
<td>Arruela do registro</td>
</tr>
<tr>
<td>54</td>
<td>Bujão de retenção</td>
</tr>
<tr>
<td>55</td>
<td>Árvore de arraste</td>
</tr>
<tr>
<td>56</td>
<td>Pino da árvore</td>
</tr>
<tr>
<td>57</td>
<td>Chaveta</td>
</tr>
<tr>
<td>58</td>
<td>Acionador da válvula de alta pressão</td>
</tr>
<tr>
<td>59</td>
<td>Corpo da válvula de alta pressão</td>
</tr>
<tr>
<td>60</td>
<td>Bujão da válvula de carregamento</td>
</tr>
<tr>
<td>61</td>
<td>Mola da válvula de carregamento</td>
</tr>
<tr>
<td>62</td>
<td>Encosto da agulha</td>
</tr>
<tr>
<td>63</td>
<td>Agulha de vedação</td>
</tr>
<tr>
<td>64</td>
<td>Corpo da válvula de carregamento</td>
</tr>
<tr>
<td>65</td>
<td>Agulha secundária</td>
</tr>
<tr>
<td>66</td>
<td>Porca de proteção</td>
</tr>
<tr>
<td>68</td>
<td>Corrente de retenção</td>
</tr>
<tr>
<td>69</td>
<td>Reservatório de alta pressão</td>
</tr>
<tr>
<td>70</td>
<td>Anel de vedação</td>
</tr>
<tr>
<td>71</td>
<td>Corpo macho do engate rápido</td>
</tr>
<tr>
<td>72</td>
<td>Volante do engate rápido</td>
</tr>
<tr>
<td>73</td>
<td>Mangueira de alta pressão</td>
</tr>
<tr>
<td>ITEM</td>
<td>DESCRIÇÃO</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>74</td>
<td>Adaptador da válvula reguladora</td>
</tr>
<tr>
<td>75</td>
<td>Corpo da válvula de drenagem</td>
</tr>
<tr>
<td>76</td>
<td>Mola da válvula de drenagem</td>
</tr>
<tr>
<td>77</td>
<td>Alojamento do disco</td>
</tr>
<tr>
<td>78</td>
<td>Disco de vedação</td>
</tr>
<tr>
<td>79</td>
<td>Corpo inferior da válvula reguladora</td>
</tr>
<tr>
<td>80</td>
<td>Mola do fechamento válvula reguladora</td>
</tr>
<tr>
<td>81</td>
<td>Encosto da agulha válvula reguladora</td>
</tr>
<tr>
<td>82</td>
<td>Agulha da válvula reguladora</td>
</tr>
<tr>
<td>83</td>
<td>Sede de vedação válvula reguladora</td>
</tr>
<tr>
<td>84</td>
<td>Alojamento do acionador</td>
</tr>
<tr>
<td>85</td>
<td>Anel redutor</td>
</tr>
<tr>
<td>86</td>
<td>Acionador da válvula reguladora</td>
</tr>
<tr>
<td>87</td>
<td>Diafragma</td>
</tr>
<tr>
<td>88</td>
<td>Anel de atrito</td>
</tr>
<tr>
<td>89</td>
<td>Guia inferior mola abertura</td>
</tr>
<tr>
<td>90</td>
<td>Mola de abertura da válvula reguladora</td>
</tr>
<tr>
<td>91</td>
<td>Guia superior da mola abertura</td>
</tr>
<tr>
<td>92</td>
<td>Corpo superior válvula reguladora</td>
</tr>
<tr>
<td>93</td>
<td>Parafuso de regulagem</td>
</tr>
<tr>
<td>94</td>
<td>Contra-porca parafuso regulador</td>
</tr>
<tr>
<td>95</td>
<td>Cotovelo da válvula reguladora</td>
</tr>
<tr>
<td>96</td>
<td>Tubo de baixa pressão</td>
</tr>
<tr>
<td>97</td>
<td>Cotovelo da válvula anti-retorno</td>
</tr>
<tr>
<td>98</td>
<td>Tampão da válvula de segurança</td>
</tr>
<tr>
<td>99</td>
<td>Calço do diafragma</td>
</tr>
<tr>
<td>100</td>
<td>Diafragma da válvula de segurança</td>
</tr>
<tr>
<td>101</td>
<td>Corpo da válvula de segurança</td>
</tr>
<tr>
<td>102</td>
<td>Arruela da válvula de segurança</td>
</tr>
<tr>
<td>103</td>
<td>Corpo da válvula anti-retorno</td>
</tr>
<tr>
<td>104</td>
<td>Agulha da válvula anti-retorno</td>
</tr>
<tr>
<td>105</td>
<td>Mola da válvula anti-retorno</td>
</tr>
<tr>
<td>106</td>
<td>Adaptador da válvula</td>
</tr>
<tr>
<td>107</td>
<td>Corpo do engate mangueira combustível</td>
</tr>
<tr>
<td>108</td>
<td>Alavanca do engate rápido</td>
</tr>
<tr>
<td>109</td>
<td>Parafuso da presilha</td>
</tr>
<tr>
<td>110</td>
<td>Pino da alavanca</td>
</tr>
</tbody>
</table>
ANEXO B

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIÇÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>Presilha de segurança</td>
</tr>
<tr>
<td>112</td>
<td>Gaxeta do engate rápido</td>
</tr>
<tr>
<td>113</td>
<td>Porca do anilho superior</td>
</tr>
<tr>
<td>114</td>
<td>Anilho superior</td>
</tr>
<tr>
<td>115</td>
<td>Anel de vedação</td>
</tr>
<tr>
<td>116</td>
<td>Anel de trava</td>
</tr>
<tr>
<td>118</td>
<td>Corrente de retenção</td>
</tr>
<tr>
<td>119</td>
<td>Corpo do bujão</td>
</tr>
<tr>
<td>120</td>
<td>Anel de vedação</td>
</tr>
<tr>
<td>121</td>
<td>Válvula de drenagem</td>
</tr>
<tr>
<td>122</td>
<td>Tubo de drenagem</td>
</tr>
<tr>
<td>123</td>
<td>Corpo do bujão válvula de segurança</td>
</tr>
<tr>
<td>124</td>
<td>Reservatório de combustível</td>
</tr>
</tbody>
</table>
Continuação do ANEXO B
ANEXO C
DISPOSITIVO DE TRANSPORTE

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIÇÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>Suspensório maior</td>
</tr>
<tr>
<td>126</td>
<td>Suspensório menor</td>
</tr>
<tr>
<td>127</td>
<td>Armação do transportador</td>
</tr>
<tr>
<td>128</td>
<td>Anilho para engate lateral</td>
</tr>
<tr>
<td>129</td>
<td>Porca do anilho</td>
</tr>
<tr>
<td>130</td>
<td>Porca do parafuso armação</td>
</tr>
<tr>
<td>130</td>
<td>Porca do parafuso</td>
</tr>
<tr>
<td>131</td>
<td>Parafuso da armação</td>
</tr>
<tr>
<td>132</td>
<td>Calço anilho lateral</td>
</tr>
<tr>
<td>133</td>
<td>Calço inferior</td>
</tr>
<tr>
<td>134</td>
<td>Parafuso fivela</td>
</tr>
<tr>
<td>135</td>
<td>Arruela</td>
</tr>
<tr>
<td>136</td>
<td>Porca borboleta</td>
</tr>
<tr>
<td>137</td>
<td>Porca da braçadeira</td>
</tr>
<tr>
<td>138</td>
<td>Braçadeira da armação</td>
</tr>
<tr>
<td>139</td>
<td>Parafuso da braçadeira</td>
</tr>
<tr>
<td>140</td>
<td>Cordão de amarração</td>
</tr>
<tr>
<td>141</td>
<td>Lona de apoio</td>
</tr>
</tbody>
</table>
Continuação do ANEXO C
ANEXO D
RELAÇÃO DE SOBRESSALENTES E ACESSÓRIOS

<table>
<thead>
<tr>
<th>QUANTIDADE</th>
<th>SOBRESSALENTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td>Agulha de ignição</td>
</tr>
<tr>
<td>02</td>
<td>Parafuso da agulha</td>
</tr>
<tr>
<td>01</td>
<td>Terminal elétrico</td>
</tr>
<tr>
<td>12</td>
<td>Anel de vedação</td>
</tr>
<tr>
<td>08</td>
<td>Pilha alcalina média</td>
</tr>
<tr>
<td>01</td>
<td>Mangueira de alta pressão</td>
</tr>
<tr>
<td>01</td>
<td>Diafragma válvula reguladora</td>
</tr>
<tr>
<td>01</td>
<td>Diafragma válvula de segurança</td>
</tr>
<tr>
<td>01</td>
<td>Gaxeta do engate rápido</td>
</tr>
<tr>
<td>01</td>
<td>Bujão de carregamento da válvula de segurança</td>
</tr>
<tr>
<td>01</td>
<td>Bujão de carregamento da válvula de escoamento</td>
</tr>
<tr>
<td>01</td>
<td>Cabeça de segurança</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACESSÓRIOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
</tr>
</tbody>
</table>
ÍNDICE ALFABÉTICO

<table>
<thead>
<tr>
<th>A</th>
<th>Prf</th>
<th>Pag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ações à realizar</td>
<td>3-13</td>
<td>3-13</td>
</tr>
<tr>
<td>Alvos</td>
<td>3-8</td>
<td>3-8</td>
</tr>
<tr>
<td>Ataque</td>
<td>5-4</td>
<td>5-4</td>
</tr>
<tr>
<td>Alcance do lança-chamas</td>
<td>3-3</td>
<td>3-3</td>
</tr>
<tr>
<td>Armazenagem</td>
<td>7-3</td>
<td>7-3</td>
</tr>
</tbody>
</table>

C

Características:
- dos combustíveis | 6-3 | 6-3 |
- do Lança-Chamas Portátil LCT1M1 | 2-2 | 2-1 |

Considereações iniciais | 1-2 | 1-1 |
Constituição (da unidade móvel de carregamento) | 6-4 | 6-4 |

D

Descrição do Lança-Chamas Portátil LCT1M1 | 2-3 | 2-1 |
Desmontagem e manutenção
- de 19 escalão | 2-6 | 2-6 |
- de 29 escalão | 2-9 | 2-9 |

E

Emprego:
- de água no adestramento | 3-9 | 3-9 |
- do combustível | 3-10| 3-10|
F
Finalidade (do manual) ... 1– 1 1– 1

G
Generalidades:
- da desmontagem e manutenção de 19 escalão 2– 4 2– 4
- da desmontagem e manutenção de 29 escalão 2– 8 2– 8
- da posição de tiro ... 3– 6 3– 6
- do emprego nas operações defensivas 5– 5 5– 5
- do emprego nas operações ofensivas 5– 2 5– 2
- dos combustíveis ... 5– 7 5– 7
- dos procedimentos administrativos 7– 1 7– 1

H
Histórico do lança-chamas .. 1– 3 1– 1

I
Incidentes de tiro mais comum 2–11 2–11
Introdução:
- (a instrução do atirador) 3– 1 3– 1
- (a segurança do tiro) .. 4– 1 4– 1
- (aos dados técnicos do lança-chamas) 2– 1 2– 1

M
Manutenção preventiva antes do disparo 2– 5 2– 5
Montagem:
- de 19 escalão .. 2– 7 2– 7
- de 29 escalão .. 2–10 2–10

N
Normas de segurança ... 4– 2 4– 2

O
Operações da unidade móvel de carregamento 6– 5 6– 5
<table>
<thead>
<tr>
<th>Operações:</th>
<th>Prf</th>
<th>Pag</th>
</tr>
</thead>
<tbody>
<tr>
<td>— para o tiro</td>
<td>3-12</td>
<td>3-12</td>
</tr>
<tr>
<td>— preliminares</td>
<td>3-11</td>
<td>3-11</td>
</tr>
</tbody>
</table>

P

<table>
<thead>
<tr>
<th>Planejamento:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>— da defesa</td>
<td>5-6</td>
<td>5-6</td>
</tr>
<tr>
<td>— do ataque</td>
<td>5-3</td>
<td>5-3</td>
</tr>
<tr>
<td>Pontaria</td>
<td>3-5</td>
<td>3-5</td>
</tr>
<tr>
<td>Posições de tiro</td>
<td>3-7</td>
<td>3-7</td>
</tr>
<tr>
<td>Principais efeitos provocados pela chama</td>
<td>1-4</td>
<td>1-3</td>
</tr>
<tr>
<td>Princípios gerais de emprego</td>
<td>1-5</td>
<td>1-5</td>
</tr>
</tbody>
</table>

R

<table>
<thead>
<tr>
<th>Rajadas de tiro</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Recebimento do material</td>
<td>7-2</td>
<td>7-2</td>
</tr>
<tr>
<td>Responsabilidade do oficial de QBN</td>
<td>5-1</td>
<td>5-1</td>
</tr>
</tbody>
</table>

S

<table>
<thead>
<tr>
<th>Seleção dos atiradores</th>
<th></th>
<th></th>
</tr>
</thead>
</table>

T

<table>
<thead>
<tr>
<th>Tipos de combustíveis</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5-8</td>
<td>5-8</td>
</tr>
</tbody>
</table>
DISTRIBUIÇÃO

1. ÓRGÃOS

<table>
<thead>
<tr>
<th>Órgão</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gabinete do Ministro</td>
<td>1</td>
</tr>
<tr>
<td>Estado-Maior do Exército</td>
<td>9</td>
</tr>
<tr>
<td>DMB</td>
<td>1</td>
</tr>
<tr>
<td>CTEX</td>
<td>1</td>
</tr>
<tr>
<td>DR, DAM</td>
<td>1</td>
</tr>
</tbody>
</table>

2. GRANDES COMANDOS E GRANDES UNIDADES

<table>
<thead>
<tr>
<th>Órgão</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exércitos</td>
<td>2</td>
</tr>
<tr>
<td>Comandos Militares de Área</td>
<td>2</td>
</tr>
<tr>
<td>Regiões Militares</td>
<td>2</td>
</tr>
<tr>
<td>Divisões</td>
<td>2</td>
</tr>
<tr>
<td>Brigadas</td>
<td>2</td>
</tr>
<tr>
<td>Grupamentos de Engenharia</td>
<td>2</td>
</tr>
<tr>
<td>Artilharias Divisionárias</td>
<td>1</td>
</tr>
<tr>
<td>Artilharia de Costa</td>
<td>1</td>
</tr>
</tbody>
</table>

3. UNIDADES

<table>
<thead>
<tr>
<th>Órgão</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inf</td>
<td>3</td>
</tr>
<tr>
<td>Cav</td>
<td>1</td>
</tr>
<tr>
<td>Art</td>
<td>1</td>
</tr>
<tr>
<td>Eng</td>
<td>1</td>
</tr>
<tr>
<td>Com</td>
<td>1</td>
</tr>
<tr>
<td>Fron</td>
<td>1</td>
</tr>
<tr>
<td>Pol Ex</td>
<td>1</td>
</tr>
<tr>
<td>Ap Log</td>
<td>2</td>
</tr>
<tr>
<td>Guarda</td>
<td>1</td>
</tr>
</tbody>
</table>
4. SUBUNIDADES (autônomas ou semi-autônomas)

<table>
<thead>
<tr>
<th>Departamento</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Inf</td>
<td>1</td>
</tr>
<tr>
<td>Cav</td>
<td>1</td>
</tr>
<tr>
<td>Eng</td>
<td>1</td>
</tr>
<tr>
<td>Fron</td>
<td>1</td>
</tr>
<tr>
<td>Pol Ex</td>
<td>1</td>
</tr>
<tr>
<td>Mat Bel</td>
<td>1</td>
</tr>
<tr>
<td>Guarda</td>
<td>1</td>
</tr>
</tbody>
</table>

5. ESTABELECIMENTOS DE ENSINO

<table>
<thead>
<tr>
<th>Instituição</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ECEME</td>
<td>30</td>
</tr>
<tr>
<td>EsAO</td>
<td>30</td>
</tr>
<tr>
<td>AMAN</td>
<td>50</td>
</tr>
<tr>
<td>EsSA</td>
<td>25</td>
</tr>
<tr>
<td>CPOR</td>
<td>5</td>
</tr>
<tr>
<td>NPOR</td>
<td>1</td>
</tr>
<tr>
<td>EsIE, CIGS, EsMB</td>
<td>5</td>
</tr>
<tr>
<td>CI Pqdt GPB</td>
<td>1</td>
</tr>
</tbody>
</table>

6. OUTRAS ORGANIZAÇÕES

<table>
<thead>
<tr>
<th>Organização</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C Doc Ex</td>
<td>1</td>
</tr>
<tr>
<td>CFN</td>
<td>1</td>
</tr>
<tr>
<td>DRAM</td>
<td>1</td>
</tr>
</tbody>
</table>
Este manual foi elaborado com base em anteprojeto apresentado pela ESCOLA DE INSTRUÇÃO ESPECIALIZADA.
1ª Edição
Tiragem: 4.000 exemplares
Dezembro de 1984